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July 2, 2020 
Ms. Tracy Perry 
Pesticide Re-Evaluation Division (7508P) 
Office of Pesticide Programs 
U.S. Environmental Protection Agency 
1200 Pennsylvania Ave., NW 
Washington, DC 20460 
 
Via Regulations.gov: EPA-HQ-OPP-2020-0090 
 
Re:  Comments on the Draft Biological Evaluations for Carbaryl and Methomyl  
EPA-HQ-OPP-2020-0090-0001; 85 Fed. Reg. 15168 (March 17th, 2020) 
 

Dear Ms. Perry: 
 
 CropLife America (“CLA”)1 appreciates the opportunity to comment on the Draft 
National Level Listed Species Biological Evaluation for Carbaryl2 and Draft National Level 
Listed Species Biological Evaluation for Methomyl3produced by the Environmental Protection 
Agency’s (“EPA” or “the Agency”) (the documents collectively, the “Draft Carbamate BEs”). 
These Draft Carbamate BEs provide the first opportunity to see the Agency’s current approach to 
application of the Revised Method for National Level Listed Species Biological Evaluations of 
Conventional Pesticides (“Revised Method”). As such, these comments are focused not only on 
the Draft Carbamate BEs but also on the Revised Method.  

CLA comments are organized into three sections. First, at page 1, we provide an 
Executive Summary of our comments. Second, beginning on page 6, we provide a discussion of 
major points on the Draft Carbamate BEs, how the Revised Method was applied in practice, and 
suggestions to improve the Draft Carbamate BEs as they are finalized and the Revised Method as 
it is applied over time. The framework for this discussion is the previously submitted CLA 

 
1 Established in 1933, CropLife America represents the developers, manufacturers, formulators, and distributors of 

plant science solutions for agriculture and pest management in the United States. CropLife America’s member 
companies produce, sell, and distribute virtually all the pesticide and biotechnology products used by American 
farmers. 

2 EPA (Environmental Protection Agency). 2020. Draft National Level Listed Species Biological Evaluation for 
Carbaryl. March 2020. 

3 EPA (Environmental Protection Agency). 2020. Draft National Level Listed Species Biological Evaluation for 
Methomyl. March 2020. 
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comments4 on the proposed Revised Method5. Third, Conclusions are drawn on page 24.  
Finally, we provide an updated report: Development and Application of a Methodology for 
Quantifying National Pesticide Usage at the County Scale (Attachment I); Malathion: Aquatic 
Endangered Species Risk Assessment – Synopsis (Attachment II); and West Indian Manatee 
Case Study (Attachment III). 

We would like to thank you for engaging in a dialog with stakeholders on this important 
issue, including continuing the stakeholder engagement within the Interagency Work Group 
called for in the 2018 Farm Bill. We look forward to being able to work with the Agency and 
other interested stakeholders on opportunities to share information on pesticide product issues 
that may help inform future regulatory decisions. Please do not hesitate to reach out to us with 
questions on these comments. 
 

Sincerely, 

 

Manojit Basu, Ph. D  
Managing Directory, Science Policy 
CropLife America 
(202)296-1585 
mbasu@croplifeamerica.org 

 
4 CLA (CropLife America). 2019. Comments on the Draft Proposed Revised Method for National Level 

Endangered Species Risk Assessment Process for Biological Evaluations for Pesticides. August 15th, 2019. Via 
Regulations.gov: EPA-HQ-OPP-2019-0185  

5 EPA (Environmental Protection Agency). 2019. Proposed Revised Method for National Level Endangered Species 
Risk Assessment Process for Biological Evaluations of Pesticides. Environmental Fate and Effects Division, 
Office of Pesticide Programs, U.S. Environmental Protection Agency. Washington DC. 

mailto:mbasu@croplifeamerica.org
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1 EXECUTIVE SUMMARY 

The Revised Method released in March 2020 and the Draft Biological Evaluations for 

Carbaryl and Methomyl are the first two Biological Evaluations (“BEs”) developed under the 

revision.  The Draft BEs for Carbaryl and Methomyl show evidence of some incremental  

improvements to the Environmental Protection Agency’s (“the Agency’s”) process for 

conducting national level threatened and endangered (listed) species biological evaluations 

(“BEs”) for conventional pesticides, but the improvements are uneven and the Revised Method’s 

practical application in the Draft Carbamate BEs demonstrates that the Agency has not yet 

reached a workable, legally defensible, or sustainable approach to listed species risk assessments. 

In the response to Public Comments Received on Proposed Revised Method for National 

Level Endangered Species Risk Assessments for Biological Evaluations of Conventional 

Pesticides (“Response to Comments”),1 the Agency told the public that the “...pilot method2 had 

the following major limitations: (1) the method did not meaningfully distinguish species that are 

likely to be exposed to and affected by the assessed pesticides from those that are not likely; (2) 

the level of effort was too high for EPA to sustain for all pesticides; and (3) the amount of 

documentation produced was too great for the public to review and comment upon in a 

reasonable timeframe.” Based on CLA’s careful review, the major limitations cited as rationale 

for revising the interim methods are largely uncorrected and, in some ways, compounded. 

The Agency should make a significant effort in the final carbamate BEs to (a) reduce the 

level of compounding conservatism in the assessment; (b) adjust the approach to more accurately 

incorporate use and usage information; and (c) strive to better establish whether or not pesticide 

exposure at a concentration causing adverse effects is reasonably likely to occur as described in 

the Service’s recently amended Endangered Species Act regulations (Sec 50 CFR § 402.02): 

 
1 EPA (Environmental Protection Agency). 2020. Response to Public Comments Received on Proposed Revised 

Method for National Level Endangered Species Risk Assessments for Biological Evaluations of Conventional 
Pesticides. Environmental Fate and Effects Division, Office of Pesticide Programs. Washington D.C. 

2 “Interim Measures,” https://www.epa.gov/endangered-species/implementing-nas-report-recommendations-
ecological-risk-assessment-endangered-and Interim Approaches for National-Level Pesticide Endangered 
Species Act Assessments Based on the Recommendations of the National Academy of Sciences April 2013 
Report.  (Last accessed: July 2, 2020) 

https://www.epa.gov/endangered-species/implementing-nas-report-recommendations-ecological-risk-assessment-endangered-and
https://www.epa.gov/endangered-species/implementing-nas-report-recommendations-ecological-risk-assessment-endangered-and
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Effects of the action are all consequences to listed species or critical habitat that are 
caused by the proposed action, including the consequences of other activities that are 
caused by the proposed action. A consequence is caused by the proposed action if it 
would not occur but for the proposed action and it is reasonably certain to occur. Effects 
of the action may occur later in time and may include consequences occurring outside the 
immediate area involved in the action. [emphasis added] 

 Based in large measure on the Agency’s concern over uncertainties in applying usage 

data only at the state level, the exposures it predicts are highly overestimated. The resulting 

compounding conservatism in the Draft Carbamate BEs is one of the severe weaknesses in the 

Agency’s application of the Revised Method. For example, the use data layers (“UDLs”) 

generated by the Agency overstate actual use due to lumping use patterns from all registered 

labels together (from multiple registrants including both agricultural and non-agricultural uses). 

Similarly, the listed species range maps are imprecise and highly conservative (county-level in 

most cases). The exposure modeling approaches use this unrealistically portrayed data and 

compound the error, by themselves being highly conservative in design. Furthermore, for most of 

the listed species analyses, the largest buffer distances resulting from the application of the most 

sensitive  direct and indirect effects thresholds are added to the aggregate UDL footprints to 

define the action area for selected uses.3 These approaches are highly conservative and expand 

the action area beyond what is reasonable for most species, making the “1% overlap” 

meaningless.  Adding all these measures of conservatism across the Revised Method results in 

Draft Carbamate BEs that do not meaningfully distinguish species that are reasonably certain to 

be exposed to and affected by the assessed pesticides from those that are not likely and for the 

most part do not appropriately distinguish between “no effect” and “may affect”. 

 For the Draft Carbamate BEs, the Agency relied upon studies used for effect thresholds 

that do not appear to follow EPA’s own study quality criteria. This has similarly been noted in 

comments submitted on the draft and final organophosphate BEs.4  The use of public literature in 

 
3 Categories include corn, cotton, rice, soybeans, wheat, vegetables and ground fruit, other grains, other row crops, 

other crops, pasture/hay, citrus, vineyards, and other orchards. 
4 Priest et al. (2016). Response to the Biological Evaluation for Malathion. Prepared for Cheminova A/S by Intrinsik 

Corp and Stone Environmental Inc. Submitted to Docket EPA-HQ-OPP-2009-0317. 
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BEs without data curation impacts the quality of the Agency’s BEs and underscores the 

limitations on the public’s opportunity to review and comment in a reasonable timeframe.  

CLA continues to advocate for probabilistic methods in the development of BEs. Within 

the Revised Method, screening-level, deterministic methods are used in Step 1 to identify listed 

species that are potentially at risk (i.e., May Affect or No Effect) from exposure to a pesticide. 

The methods are deliberately and overly conservative to reduce the likelihood of Type II errors 

(failure to reject a false null hypothesis of de minimis risk), but correspondingly increase Type I 

errors (falsely reject a null hypothesis of de minimis risk). As the Agency and the Services (Fish 

and Wildlife Service (“FWS”), and National Marine Fisheries Service (“NMFS”)) gain 

experience with the Endangered Species Act (“ESA”) risk assessment process, refinements that 

better reflect the reasonable certainty of realistic effects of pesticides on listed species should be 

incorporated earlier in the review process.  

The Draft Carbamate BEs provide the first opportunity to evaluate how EPA applied 

weight-of-evidence approaches to support the effect determinations made for individual listed 

species and/or their critical habitat. Again, the results are disappointing.  In the Draft Carbamate 

BEs (as in the organophosphate BEs), no line of evidence was able to reverse a determination 

call from Likely to Adversely Affect (LAA) to Not Likely to Adversely Affect (NLAA) or to No 

Effect (NA). This creates the perception that there is no point in the review process at which 

more realistic exposure estimates will be incorporated into the review.  The Agency’s failure to 

explain how “mitigating” lines of evidence will be incorporated puts a greater burden on the 

Services to undertake this incorporation during the Biological Opinion (BiOp) process and 

unnecessarily confuses the public.  

The Draft Carbamate BEs outline several new models, including a MAGTool, that is 

highly complex and incorporates spatial data, effects thresholds, exposure models, and the 

probabilistic tools in the alternative analyses that the Agency hopes to use to evaluate risk to 

listed species. Within the time limit of the Public Comment period, this tool is far too complex to 

be able to evaluate fully.  Furthermore, there is currently a lack of transparency and insufficient 

documentation on how the model functions and inputs required to the MAGTool.  This is 

especially worrisome because the Agency claims that eight new models were used in the Draft 
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Carbamate BEs.  However, to CLA’s knowledge, none of the models have been previously 

available for public review and comment. For example, UDL generation takes a considerable 

amount of time and effort to reconstruct and evaluate. In this case, the fact that the UDLs were 

not available with the Draft Carbamate BEs makes it very difficult to review and comment on 

this critically important component. The use site generation tool5 was presumably used to 

generate the UDLs for carbaryl and methomyl, but this is not clearly stated.  

Finally, CLA recognizes that the Revised Methods alone cannot address all the flaws in 

the current process of ESA review of pesticides.  CLA urges the Agency and its federal partners 

within the Interagency Working Group (“IWG”) to, as soon as practicable, follow the direction 

of Congress regarding regular consultation with interested stakeholders, taking into account their 

differing viewpoints, to develop a nationwide evaluation of pesticide risks to listed species that is 

efficient, scientifically defensible, and that relies on the best available scientific and commercial 

data. For example, the Agency could convene its stakeholder meetings before the deadline for 

progress reports required by Sec. 10115 of Agriculture Improvement Act of 2018 (P. L.115–334) 

so that the IWG has enough time to consider stakeholder comments as it drafts reports to 

Congress and further improves the ESA review process for pesticides. 

 

 

 

  

 
5 https://www.epa.gov/endangered-species/models-and-tools-national-level-listed-species-biological-evaluations-

carbaryl#spatial (Last Accessed: July 2, 2020) 

https://www.epa.gov/endangered-species/models-and-tools-national-level-listed-species-biological-evaluations-carbaryl#spatial
https://www.epa.gov/endangered-species/models-and-tools-national-level-listed-species-biological-evaluations-carbaryl#spatial
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2 SUBSTANTIVE COMMENTS 

The Agency released the Revised Method6 and the two Draft Carbamate BEs 

concurrently in March 2020.7,8 In response to the proposed Revised Method,9 CLA submitted 

comments to the Agency in August 2019.10 The Draft Carbamate BEs represent the first 

application of the Revised Method and thus the first opportunity to evaluate how EPA  

implemented it after considering public comments.  Because CLA had some major concerns with 

the proposed Revised Method,10  the current opportunity to comment allows us to examine the 

Agency’s response to public comments,11 and note how actions not taken to improve the Revised 

Methods have impacted the Draft Carbamate BEs. 

 

2.1 Reasonably Certain to Occur 

 EPA should  make a significant effort in the final carbamate BEs to (a) reduce the level 

of compounding conservatism in the assessment; (b) adjust the approach to more accurately 

incorporate use and usage information; and (c) better establish whether pesticide exposure at a 

concentration causing adverse effects is reasonably certain to occur as described in the new ESA 

implementation regulations (Sec 50 CFR § 402.02): 

Effects of the action are all consequences to listed species or critical habitat that are 

caused by the proposed action, including the consequences of other activities that are 

 
6 EPA (Environmental Protection Agency). 2020.  Revised Method for National Level Listed Species Biological 

Evaluations of Conventional Pesticides. Environmental Fate and Effects Division, Office of Pesticide Programs, 
U.S. Environmental Protection Agency. Washington DC. 

7 EPA (Environmental Protection Agency). 2020. Draft National Level Listed Species Biological Evaluation for 
Carbaryl. March 2020. 

8 EPA (Environmental Protection Agency). 2020. Draft National Level Listed Species Biological Evaluation for 
Methomyl. March 2020. 

9 EPA (Environmental Protection Agency). 2019. Proposed Revised Method for National Level Endangered Species 
Risk Assessment Process for Biological Evaluations of Pesticides. Environmental Fate and Effects Division, 
Office of Pesticide Programs, U.S. Environmental Protection Agency. Washington DC. 

10 CLA (CropLife America). 2019. Comments on the Draft Proposed Revised Method for National Level 
Endangered Species Risk Assessment Process for Biological Evaluations for Pesticides. August 15th, 2019. Via 
Regulations.gov: EPA-HQ-OPP-2019-0185 

11 EPA (Environmental Protection Agency). 2020. Response to Public Comments Received on Proposed Revised 
Method for National Level Endangered Species Risk Assessments for Biological Evaluations of Conventional 
Pesticides. Environmental Fate and Effects Division, Office of Pesticide Programs. Washington D.C. 
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caused by the proposed action. A consequence is caused by the proposed action if it 

would not occur but for the proposed action and it is reasonably certain to occur. Effects 

of the action may occur later in time and may include consequences occurring outside the 

immediate area involved in the action. [emphasis added] 

Based on this language, CLA believes in Step 1, a May Affect (MA) determination 

should reflect whether an effect is “reasonably certain to occur.” However, Step 1a in the 

Revised Method simply examines whether exposure can occur based on an evaluation of species 

range data overlapped with action area. In Steps 1b-c, effects analyses are made using sensitive 

surrogate effect thresholds. These analyses are compared to the highest estimated exposure 

concentration (EEC) predicted for the species in the terrestrial and/or aquatic environment. 

Ultimately, if the EECs exceed the sensitive effect thresholds, then a MA determination is made. 

Insufficient species-specific information is applied to inform the Step 1 risk characterization 

beyond use of the coarse and uncertain range data, often at the county-level (location and 

exposure); assignment of an aquatic or semi-aquatic listed species to a surrogate aquatic BIN (or 

BINs); and an approximation of diet (to estimate dietary residues). Given the vast differences in 

landscape (and associated pesticide needs) across the area that may be captured in these 

estimations, this approach does not appear to establish that a given pesticide is “reasonably 

certain” to affect a specific listed species.  

Broader consideration of specific individual exposure scenarios for each listed species 

(e.g., watershed level modeling); species life histories; factors that may mitigate exposure (e.g., 

landscape, behavior); and the probability of exposure actually occurring given appropriate 

historical use and usage data, are needed to establish whether the effects of the registration action 

would be reasonably certain to affect a listed species. It is not appropriate to shift this level of 

complex risk assessment to the Services without additional direction from EPA. The discussion 

in the sections below addresses the need for EPA to more carefully define “may affect” and then 

thoroughly apply listed species information, refined exposure predictions, and  lines of evidence 

to make defensible and realistic predictions of what is reasonably certain to occur to lessen the 

burden on the Services at later stages of review.         
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2.2 Pesticide usage data  

  CLA is encouraged that EPA has considered usage data in the Draft Carbamate BEs. As 

noted in our previous comments4 on the proposed Revised Method, usage data allow for a more 

accurate reflection of pesticide use. CLA has updated its proposed methodology to demonstrate 

how usage data can be applied (see Attachment I: “Development and Application of a 

Methodology for Quantifying National Pesticide Usage at the County Scale”). Given the lines of 

evidence available (e.g., import certificates, sales data, usage data, pesticide products supplied to  

USDA’s Animal and Plant Health Inspection Service (“APHIS”) programs and other sources of 

information) demonstrating actual usage at a significantly lower application rates, an assumption 

of full label rate application on 100% of the crop footprint, 100% of the time, is simply not 

relevant for a meaningful effect analysis on any listed species or its critical habitat.  

EPA’s application of usage data at the state-level in Step 2 does not provide an appropriate level 

of detail to effectively allow for realistic exposure estimations for individual listed species. 

Further, conservative assumptions must be made regarding how to address the actual percent 

crop treated area (“PCT”) within a species range using best available data; thereby considerably 

increasing the uncertainty and conservatism of the risk characterization. Situations where high 

quality usage data are readily available at refined spatial resolutions (e.g., California Pesticide 

Use Reporting data – “PUR”) present best available data, but the Agency appears to ignore these 

data and default to the gross California state-level view. 

EPA’s acknowledgement of the uncertainties in the adoption of usage data at the state 

level (see draft carbaryl BE Section 4 – Page 4-13) supports the argument that the exposures 

predicted are highly overestimated. Step 1 results in most species (97% for carbaryl; 85% for 

methomyl) receiving a May Affect (MA) determination essentially automatically with little 

consideration for whether the determinations are reasonably certain to occur for each species. 

Thus, Step 1 is highly conservative, inefficient, and does not reflect the reality of pesticide 

exposure potential for listed species. 

Compounding conservatism in the Draft Carbamate BEs reveal one of its severe 

weaknesses. In Step 1, a determination of NE or MA is partially based on species range/action 

area overlap, with the assumptions that use at full label rates on 100% of crop and non-crop area 
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will occur. The UDLs generated by EPA are overestimates of actual use due to lumping together 

of use patterns, both agricultural and non-agricultural, from all registered labels from multiple 

registrants. The listed species ranges are imprecise and highly conservative (county-level in most 

cases).  

Application of usage data at Step 2 at the state level within the species ranges is also 

highly conservative. EPA assumes the percent crop treated (“PCT”) would be applied within the 

area where use patterns and species ranges (or critical habitat area) overlap. This ignores the fact 

that a pesticide could be applied anywhere within a state and not just within the species range or 

critical habitat area, making this assumption unrealistic. The justification for this assumption is 

that it is conservative and intended to address the inherent uncertainty.12 Given that foliar applied 

insecticides are used only where pest pressure reaches the potential for crop damage thresholds, 

application is certain to occur unevenly throughout a state. How usage data is distributed within a 

state should therefore be estimated using probabilistic methods.13 Step 2, as applied, does little to 

address compounding conservatism, as a refined step in a hierarchical Ecological Risk 

Assessment (ERA) process should do. (See the following references for examples).13,14,15,16,17, 

How usage data are applied also leads to unrealistic conservatism within the exposure 

modeling approaches themselves. For example, the UDLs and usage data inform pesticide inputs 

into the exposure models.  The aquatic exposure modeling in the Revised Methods is then very 

conservative itself.  For example, using variable field sizes (depending on whether standard 

pond, index reservoir, or edge-of-field was used as species aquatic habitat (bin) surrogates). The 

results are highly generic and represent unrealistic and highly conservative exposure scenarios 

 
12 See EPA response to Comment 21  
13 Richardson L, Bang J, Budreski K, et al. A Probabilistic Co-Occurrence Approach for Estimating Likelihood of 

Spatial Overlap Between Listed Species Distribution and Pesticide Use Patterns. Integr Environ Assess Manag. 
2019;15(6):936‐947. doi:10.1002/ieam.4191 

14 EPA (US Environmental Protection Agency). 1992. Framework for Ecological Risk Assessment. EPA/630/R-
92/001 

15 EPA (US Environmental Protection Agency). 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-
95/002F 

16 NAS (National Academies of Science). 2013. Assessing risks from endangered and threatened species from 
pesticides. Washington, DC: The National Academies Press. https://doi.org/10.17226/18344 (Last accessed: July 
2, 2020). ISBN 978-0-309-28583-4 

17 See EPA response to Public Comment (Citation 11). Comment#21  

https://doi.org/10.17226/18344
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for any individual listed species. For terrestrial listed species, the usage data and UDLs inform 

the exposure concentrations/residues predicted at a distance for off-field drift, but the off-field 

drift component does not account for the habitat that a species may be found in.  This is an 

important line of evidence, especially since edge of field habitats may indeed already be 

managed for agricultural production.  An additional example of this is spray drift interception by 

trees. Not accounting for this likelihood causes an overestimate of pesticide exposure for listed 

species found only in old growth forests. As another example, pray drift interception and 

direction comprised one line of evidence used qualitatively by EPA to evaluate the potential for 

risk for beach species (discussed in Carbaryl BE Appendix 4 through 8 and in more detail 

below).   

  Given Step 1 already identifies the vast majority of species as MA based on the 

compounding of conservative assumptions laid out above, the usage data as applied in Steps 2f 

and 2g then makes it extremely likely that a listed species will receive a LAA determination, 

whether or not a listed species (or critical habitat) has the potential to be actually exposed to, or 

adversely affected by, a pesticide. The application of the usage data to predict listed species 

exposure should be conducted at the sub-state level and account for the fact that usage can occur 

unevenly throughout the state because certain areas will experience greater pest pressures than 

others. Probabilistic methods applied to spatially distribute the pesticide at finer spatial 

resolutions using all available knowledge would provide more accurate and realistic assessments. 

EPA should consider how usage data should be applied in the Revised Method and within the 

Draft Carbamate BEs to provide a more realistic assessment of the effects of pesticides on listed 

species and critical habitat, relieve the Services of more of the analytical burden of these 

reviews, and focus mitigation resources where potential risk may be appropriately identified.    

Further, CLA recommends that EPA’s analysis incorporate existing conservation areas 

within the agricultural landscape. For example, USDA conservation programs are being 

supported by an estimated $6B expenditure in FY 2020.  Recognition of existing protections and 

conservation efforts in the EPA assessment process, and alignment with the Services on how 

these existing protections can inform the pesticide assessment process, could allow the Agency 
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to work with IWG partners to leverage ongoing conservation efforts and maximize benefits to 

listed species.   

  Overall, CLA believes that a thorough review of the compounding conservatism of the 

BE within the context of the usage data application and impacts on the likelihood of exposure is 

warranted.  

2.3 Data Quality 

CLA recognizes that a significant effort is required to evaluate all open literature studies for 

quality, reliability, and relevance. However, this review is necessary to provide a scientifically 

defensible assessment of risk and is regularly undertaken during the FIFRA registration process 

where data evaluation records are produced.18 EPA has stringent data quality requirements for 

conducting guideline studies,19 usually conducted under Good Laboratory Practice (“GLP”), and 

for peer-reviewed studies available in the public literature. Much of the data used in the Draft 

Carbamate BEs came from electronic sources such as the ECOTOXicology knowledge-base 

(ECOTOX) and the Office of Pesticide Products Information Network (”OPPIN”), both of which 

include registrant submitted studies as well as studies from other sources. While these databases 

are represented as curated, meaning data placed in the databases are assumed to have been 

reviewed for quality, that representation does not hold when certain studies referenced there are 

fully evaluated. In the Draft Carbamate BEs, Appendices 2-2 (All Accepted Reports – 

ECOTOX), 2-3 (Open Literature Review Summaries), and 2-4 (Studies Submitted to EPA) 

contain information on the studies collected for use in the BEs. Appendix 2-3 specifically 

contains reviews by EFED staff of the ECOTOX studies collected. However, there are studies 

used for effect thresholds that do not appear to follow EPA’s own study quality criteria. This 

situation has similarly been noted in comments submitted on the draft and final organophosphate 

BEs.20  

 
18 https://www.epa.gov/pesticide-registration/oecd-data-evaluation-record-templates  
19https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-850-ecological-effects-test-guidelines 

(Last accessed: July 2, 2020) 
20 Priest et al. (2016). Response to the Biological Evaluation for Malathion. Prepared for Cheminova A/S by 

Intrinsik Corp and Stone Environmental Inc. Submitted to Docket EPA-HQ-OPP-2009-0317. 
 

https://www.epa.gov/pesticide-registration/oecd-data-evaluation-record-templates%20L
https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-850-ecological-effects-test-guidelines
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The Pellston Workshop on Improving the Usability of Ecotoxicology in Regulatory 

Decision-Making,21 in which the Agency took part, highlighted a multitude of limitations of 

using open-literature data to support risk assessment decisions. These limitations focused on the 

need to evaluate quality, reliability, and relevance, to ensure that minimum requirements and 

standards for the application of ecotoxicity studies are applied to regulatory decision making. A 

template such as those developed for EPA‘s study data evaluation records (“DER”)18 needs to be 

designed to present complete review information on which studies follow EPA guidance, while 

also commenting on the quality (adherence to protocols and GLP standards), reliability (fitness 

for use as a representative endpoint through the surrogate species comparison), and relevance of 

the study (comparison to GLP guideline or peer-reviewed published study results  for the same 

species. Developing this template would ensure that only studies of sufficient quality, relevance 

and reliability were applied to the risk assessment, thus increasing confidence in the outcomes.  

2.4 Spatial data, and a less than 1% spatial overlap  

 Application of the 1% threshold in Step 2e of the Draft Carbamate BEs did not impact 

effect determinations for most listed species and critical habitats evaluated primarily due to the 

compounding conservative assumptions used. For most of the listed species analyses, the largest 

of the direct and indirect effects buffer distances is added to the aggregate UDL footprints to 

define the action area extent for selected uses.22 This approach is highly conservative and 

expands the action area beyond what is reasonable for most species. The action area is then 

intersected with the coarse listed species range data (generally county-level) to produce the 

percent overlap. It does not account for usage (e.g., PCT, application rates), species effects, or 

other considerations. Thus, the value of the application of a 1% threshold to account for spatial 

resolution for individual listed species is questionable. However, considering other lines of 

evidence, the <1% threshold would be far more likely to demonstrate a more realistic 

understanding of the extent of overlap for many species and critical habitats. This approach was 

 
21 Ågerstrand, M. and J. Staveley. 2015. Improving the usability of ecotoxicology in regulatory decision-making. A 

SETAC Pellston Workshop. 
https://cdn.ymaws.com/www.setac.org/resource/resmgr/publications_and_resources/Usability_Workshop_Execu
tive.pdf 

22 Categories include corn, cotton, rice, soybeans, wheat, vegetables and ground fruit, other grains, other row crops, 
other crops, pasture/hay, citrus, vineyards and other orchards. 

https://cdn.ymaws.com/www.setac.org/resource/resmgr/publications_and_resources/Usability_Workshop_Executive.pdf
https://cdn.ymaws.com/www.setac.org/resource/resmgr/publications_and_resources/Usability_Workshop_Executive.pdf
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applied in the beach species analysis in Appendix 4-8 of the draft carbaryl BE. Overlap of very 

specific species habitats with use patterns in proximity were used to identify where overlap was 

<1%. The beach species are further discussed in the weight-of-evidence discussion below.  

2.4.1 Spatial Data, Usage and Resolution  

EPAs’ UDLs combine use patterns from all registered labels (from multiple registrants) 

together (including both agricultural and non-agricultural uses), and this can be problematic for 

the BE exposure assessment as well as from the perspective of each of the individual label 

registration actions. From the perspective of potential exposure, combining agricultural and non-

agricultural uses into a single spatial footprint over-estimates use (i.e., the action area) in Step 1. 

Combining this with highly conservative species range information (e.g., often county level or 

multiple HUC12s) and ignoring areas that cannot be used by the species (e.g., urban areas, open 

water for terrestrial species etc.) significantly overestimates overlap between the action area and 

species locations. This is one reason why, so few NE determinations were made at Step 1. From 

the results of Step 2, EPA discusses the UDL risk drivers for LAA determinations, which for 

methomyl most often include the pasture UDL (see Chapter 4, p 4-12), in part because pasture is 

used as a surrogate for alfalfa. However, according the BEAD analyses (see methomyl BE 

Appendix 1-4) methomyl is only used on alfalfa in five states (AZ, CA, KS, OK, PA). Thus, 

generalization of the pasture UDL can result in incorrect and unreasonable predictions of 

exposure, and therefore, effect determinations. Use of the pasture UDL in this example clearly 

does not meet the “reasonably likely to occur” standard. 

Labels for a given active ingredient from different registrants often have unique 

combinations of labelled uses, but the aggregated UDLs are based on all the labeled uses 

combined. This does not allow for an evaluation of risk from: 1) an individual label (the federal 

action), 2)or an individual use pattern, nor does it allow for a, or 3) subsequent evaluation of 

whether reasonable and prudent measures or actions, specific to an individual labelled use 

pattern, are required in a biological opinion (BiOp). Providing more nuance and refinement in 

UDLs within the BE will save resources later in the review process. 
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2.5 Probabilistic methods 

CLA continues to advocate for probabilistic methods in the development of BEs. Within 

the Revised Method, screening-level, deterministic methods are used in Step 1 to identify listed 

species that may be affected by exposure to an active ingredient. The methods are deliberately 

and overly conservative to reduce the likelihood of Type II errors (accept a false null hypothesis 

of de minimis risk), but correspondingly increase Type I errors (reject a true null hypothesis of de 

minimis risk). As demonstrated in the Draft Carbamate BEs, this approach places the resource 

and administrative burden on the Services, which have fewer resources and less expertise on 

pesticide issues than the Agency.    

Probabilistic methods provide a robust means to evaluate risk, including variability and 

uncertainty, particularly at the landscape scale which is most relevant to listed species and their 

critical habitat. Probabilistic methods are ideal for use in a BE, given that most modeling inputs 

(e.g., usage data, exposure models, spatial data) are variable and have associated uncertainty. 

The National Academies of Science16 suggested that at Step 2 risk managers would be best 

informed using probabilistic methods to capture variability and uncertainty of parameters. 

Probabilistic assessments can be used to develop risk statements such as “there is a 20% 

probability of a 25% or more reduction in the population growth rate as a result of this action.” 

This probabilistic approach has been used in many ecological risk assessments23,24,25, and in 

 
23 Moore, D.R.J., R.S. Teed, S.I. Rodney, R.P. Thompson and D.L. Fischer. 2010. Refined avian risk assessment for 

aldicarb in the United States. Integrated Environmental Assessment and Management 6(1):83-101. 
24 Giddings, J.M., T.A. Anderson, L.W. Hall, A.J. Hosmer, R.J. Kendall, R.P. Richards, K.R. Solomon and W.M. 

Williams. 2005. Atrazine in North American surface waters: a probabilistic aquatic ecological risk assessment. 
Society of Environmental Toxicology and Chemistry, Pensacola, FL. 

25 Moore, D.R.J., R.P. Thompson, S.I. Rodney, D.L. Fischer, T. Ramanaryanan and T. Hall. 2010. Refined aquatic 
risk assessment for aldicarb in the United States. Integrated Environmental Assessment and Management 
6(1):102-118. 
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listed species risk assessments for a variety of species. 26,27,32 In the final carbamate and future 

BEs, this sort of probabilistic risk statement would better describe the potential for adverse 

effects to one or more individual organisms and communicate the confidence the Agency has in 

the modeling line of evidence. Once EPA and the Services gain experience with the process, they 

would benefit from operational guidelines by which assumptions could be made on NE and MA 

decisions that could streamline the need for repetitive analysis on pesticides with similar 

exposure patterns and/or toxicity profiles. 

2.6 A robust weight-of-evidence approach  

EPA has long considered how to evaluate ecological risks and in 1992, the Agency 

published the Framework for ERA14 incorporating the concept of a tiered approach. The 1998 

revision of the ERA15 maintained the iterative, tiered process. This tiered strategy has thus served 

as the general basis of environmental risk assessment at EPA for the past 28 years. The revised 

1998 ERA guidance is cited in the National Research Council (NRC) Panel report16 as an 

appropriate basis for the endangered species risk assessment process. In all cases the early tiers 

serve as screening-levels or coarse filters, while in later refined tiers, additional information, 

data, refined methods, and more realistic assumptions are used to characterize risk, and finally, 

draw risk assessment conclusions. In the Draft Carbamate BEs, this process is short circuited by 

making effect determination ‘calls’ (NE/MA) early and not later in the process considering 

evidence that can provide considerably more context and realism to the effect determination. 

This is particularly important given the level of detail and information required in listed species 

assessments to evaluate effectively each individual listed species (and its critical habitat) in a 

scientifically defensible manner. This missing refined evaluation and context ultimately 

 
26 Clemow, Y, G.E. Manning, R.L. Breton, M.F. Winchell, L. Padilla, S.I. Rodney, J.P. Hanzas, T. E. Estes, K. 

Budreski, B.N. Toth, K.L. Hill, C. D. Priest, R.S. Teed, L.D. Knopper, D.R.J. Moore, C.T. Stone and P. 
Whatling. 2018. A refined ecological risk assessment for California Red-Legged frog, Delta Smelt, and 
California Tiger Salamander exposed to malathion. Integrated Environmental Assessment and Management 
14(2):224-239 

27 Breton, R., Y. Clemow, G. Manning, S. Rodney, D. Moore, and C. Greer. 2016. Refined Effects Determination 
for California Tiger Salamander Potentially Exposed to Malathion. Unpublished study performed by Intrinsik 
Environmental Sciences Inc., Ottawa, ON, Project No. 60455, for Cheminova, Inc., Arlington, VA. final report 
dated June 10, 2016. [MRID 49949505]. 
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increases the burden on the limited resources of the Services to evaluate far more listed species 

than can reasonably be considered to have adverse effects that are “reasonably certain to occur.” 

EPA should take responsibility for undertaking the initial review of this refined data, for later 

concurrence by the Services.     

The Draft Carbamate BEs provide the first opportunity to evaluate how EPA applied 

weight-of-evidence approaches to effect determinations made for individual listed species and/or 

their critical habitat. In the Draft Carbamate BEs, as well as in the organophosphate BEs, no line 

of evidence had any impact on an effect determination call once it was made. EPA appears to 

apply its weight of evidence approach only to determine confidence (Steps 2h and 2i). 

Unfortunately, the confidence determination appears immaterial to the effect determination and 

seems intended to provide information to the Services on whether EPA believes the effect 

determinations made for each species were well supported or not. It does not appear to provide 

the Services with meaningful direction regarding a Likely to Adversely Affect/Not Likely to 

Adversely Affect (LAA/NLAA) determination. 

In the Draft Carbamate BEs, EPA makes highly conservative assumptions to account for 

uncertainties in the data, model inputs, and the models themselves. This leads to compounding 

conservatism throughout the BE and generates risk estimates that do not reflect the reality of the 

listed species being evaluated. Therefore, it is critical that other lines of evidence are considered 

in Step 1 and 2 to provide appropriate context to the effect determination and proposed 

LAA/NLAA calls prior to them being made.  
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Considerable documentation is available on conducting qualitative and quantitative 

weight-of-evidence (WoE) analyses for regulatory decision making.28,29,30,31 Risk assessments on 

listed species have also been conducted with a WoE component28,32 and illustrate how lines of 

evidence, including those for modeling, are incorporated into the risk characterization to inform 

the risk conclusion (in this case, effect and proposed LAA/NLAA determinations). As an 

example of how this can be done, a synopsis of the Refined Aquatic Endangered Species Risk 

Assessment for Malathion32 is provided as Attachment II.  

In its practical application of the Revised Method in the Draft Carbamate BEs, EPA takes 

a highly linear approach. At each step, an effect determination (Step 1 – NE or MA and Step 2 - 

NLAA or LAA) can be made which does not appear to be influenced by any further evidence 

collected and evaluated at subsequent steps. The one exception to this is a re-visitation of the 

potential for pesticide exposure for aquatic species assigned NE or NLAA. If carbaryl was 

detected in water monitoring data found upstream of or in the species range, an effect 

determination can be changed to LAA. This process is documented in Attachment 4-1 of both 

draft BEs. In the draft carbaryl BE, the effect determination was changed for the Rio Grande 

Silvery Minnows (see draft carbaryl BE Appendix 4-6). There does not appear to be a 

mechanism to use the same line of evidence (monitoring data) to review and change an LAA 

determination to NLAA. This illustrates propagation of compounding conservatism throughout 

the BE process. A final BE should provide clear context and analysis on how EPA reached its 

conclusions, how further refinement could provide a more realistic understanding of the 

 
28 SETAC (Society of Environmental Toxicology and Chemistry). 2018. Weight-of-Evidence in Environmental 

Risk Assessment – Virtual Issue. Integrated Environmental Assessment and Management  
https://tinyurl.com/y78osxef 

29 Hall, T.A., S. E. Belanger, P.D. Guiney, M. Galay-Burgos, G. Maack, W. Stubblefield, and O. Martin. New 
approach to Weight-of-evidence Assessment of Ecotoxicological Effects in Regulatory Decision-Making. 
Integrated Environmental Assessment and Management 13(4):573 – 579. 

30 Lutter R, L. Abbott, R. Becker, et al. 2015. Improving weight of evidence approaches to chemical evaluations. 
Risk Anal. 2015;35(2):186‐192. doi:10.1111/risa.12277 

31 Linkov I, D. Loney, S. Cormier, F.K. Satterstrom, T. Bridges. 2009. Weight-of-evidence evaluation in 
environmental assessment: review of qualitative and quantitative approaches. Sci Total Environ. 
2009;407(19):5199‐5205. doi:10.1016/j.scitotenv.05.004 

32 Teed, R.S., M.  Winchell, L. Padilla et al. 2019. Refined Aquatic Endangered Species Risk Assessment for 
Malathion. Unpublished Study Prepared by Stone Environmental, Inc. 719p. [MRID 51064201] 

https://tinyurl.com/y78osxef
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interaction between the pesticide and listed species, and a well-supported recommendation on an 

LAA/NLAA determination for the Services. 

The risk assessment models (e.g., TED, a form of AgDrift) found within the BE 

MAGTool are generic in their approach and deterministic in their implementation. Although the 

MAGTool does have some probabilistic analyses using Crystal Ball™, these analyses are by and 

large limited to the alternative analyses, which does not appear in the Draft Carbamate BEs to 

have influenced the effect determinations for each listed species or their critical habitat. These 

models use species-specific information on body weight, diet, and other factors (e.g., species 

range, proximity to use patterns) to develop a risk characterization for each listed species. 

However, they do not account for specific life history information or other lines of evidence that 

may influence the probability of exposure and effect. Given that EPA had access to an updated 

national FWS validated species status dataset, but built its own dataset for species information in 

these draft BEs makes this approach even more problematic. These lines of evidence must also 

be applied to develop and complete the refined risk characterization leading to a scientifically 

defensible effect determination.  

Although this comment applies to the listed species for which quantitative risk 

characterization was conducted, it is particularly true for those species where a qualitative risk 

assessment was conducted due to a lack of quantitative information (BE Chapter 4 Steps 2a - i 

and Appendix 4-8 in the carbaryl BE). For example, in the Agency’s qualitative treatment of 

listed species associated with beach environments, EPA applied a finer spatial lens to a group of 

beach species in Step 2d (draft carbamates BE Appendix 4-8).  It did so by incorporating 

information on habitat preference and refining the spatial extent of range information to focus on 

beach habitats where the species are known to be found. This approach uses lines of evidence 

(i.e., FWS information on habitat preference, location, and additional data in the form of the 

GAP/Landfire spatial datasets) to inform the modeling effort. CLA strongly agrees supports this 

general approach.  

CLA recognizes that the generic spatial data used in the Draft Carbamate BEs does not 

necessarily represent where a listed species may be located. When conservative assumptions are 

made to account for this uncertainty, the results are conservative. When the same uncertainty 
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strategy is applied multiple times, such as applying county-level or HUC12 range data without 

consideration of habitat; applying an aggregated use footprint to maximize a potential action 

area; and applying the most sensitive of the indirect or direct effect thresholds to generate 

maximum off-field movement buffers, the conservatism of the assessment is significantly 

compounded and no longer reflects the listed species’ reality.  

Another example of this is in the qualitative analysis of the West Indian manatee (Trichechus 

manatus) (Draft Carbaryl BE Appendix 4-8, Step 2d), which led to an LAA effect determination 

for carbaryl’s effect on this species. CLA has provided an alternate case study for the West 

Indian manatee that applies semi-quantitative and qualitative approaches and incorporates 

available lines of evidence to support the effect determination.  This approach reflects a more 

realistic assessment of carbaryl’s effect on this species more likely to meet the ESA regulations’ 

“reasonable certainty” standard (see Attachment III: West Indian Manatee Case Study).  

2.7 Making efficient and scientifically defensible “no-effect” determinations 

  As set forth above and in CLA’s comments on the draft Revised Method, the Agency can 

make the BE process more efficient by addressing the potential for harm to listed species much 

earlier in the process. The following highlights why the issue was identified by CLA in the 

proposed revised method CLA continues to advocate for this approach, based on the carbaryl and 

methomyl BEs as well as results from the organophosphate BEs.33,34,35 

Appendix 4-8 (additional qualitative species analysis), in both the Draft Carbamate BEs, 

provides evidence regarding listed species that are unlikely to be exposed due to incomplete 

exposure pathways. EPA also qualitatively determines whether the exposure modeling applied in 

the BE is appropriate for the listed species being evaluated. This section adds limited but needed 

 
33 EPA (US Environmental Protection Agency). 2017a. Biological Evaluation Chapters for Malathion ESA 

Assessment. https://www.epa.gov/endangered-species/biological-evaluation-chapters-malathion-esa-assessment. 
Accessed May 5th, 2020 

34 EPA (US Environmental Protection Agency). 2017b. Biological Evaluation Chapters for Chlorpyrifos ESA 
Assessment.https://www.epa.gov/endangered-species/biological-evaluation-chapters-chlorpyrifos-esa-
assessment. Accessed May 5th, 2020 

35 EPA (US Environmental Protection Agency). 2017b. Biological Evaluation Chapters for Diazinon ESA 
Assessment. https://www.epa.gov/endangered-species/biological-evaluation-chapters-diazinon-esa-assessment 
Accessed May 5th, 2020 

https://www.epa.gov/endangered-species/biological-evaluation-chapters-malathion-esa-assessment
https://www.epa.gov/endangered-species/biological-evaluation-chapters-chlorpyrifos-esa-assessment
https://www.epa.gov/endangered-species/biological-evaluation-chapters-chlorpyrifos-esa-assessment
https://www.epa.gov/endangered-species/biological-evaluation-chapters-diazinon-esa-assessment
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realism to the assessment that should be applied much earlier in the assessment process. For 

example, for most pesticides, application of a pesticide to the open ocean is very unlikely as 

stated in the BE in the statement below: 

“Exposures to species that predominantly occur in the open ocean (e.g., whales) or rely on ocean 

species (e.g., seabirds) are reasonably expected to be de minimis. This is because carbaryl is not 

applied directly to the ocean and does not bioaccumulate.”  

The same justification was used in the organophosphate (“OP”) BEs, and the subsequent 

OP BiOp and NMFS concurred.36  

This logic holds for most of the other species that are unlikely to be impacted (pinnipeds, 

sea birds, and the other species mentioned). Thus, it should be straightforward for the EPA to 

have an a priori informal consultation with the Services to establish an agreed upon list of 

species, including extirpated and extinct species that do not have to be independently 

investigated in future BEs.  

These specific determinations could be reviewed regularly. If new information arises that 

might suggest the potential for impact to a listed species has changed, a justification can be 

recorded in the problem formulation to include a more detailed analysis. Otherwise, no further 

assessment is needed. This would make the BE process more efficient, saving effort and 

resources moving forward. Looking for these opportunities fits with the Agency’s recognition 

that:  

“The methods applied to BEs will continue to evolve as EPA gains experience and as 

scientific methods and data improve.” (Page 8 of Revised Method)6  

These types of opportunities abound in endangered species assessments and should be 

addressed where possible in the preparatory stages of BE development. CLA has documented 

 
36 NMFS (National Marine Fisheries Service). 2017. Endangered Species Act Section 7 – BO. Environmental 

Protection Agency’s Reregistration of Pesticides Containing Chlorpyrifos, Diazinon, and Malathion. Endangered 
Species Act Interagency Cooperation Division, Office of Protected Resources. Consultation Tracking Number 
FPR-2017-9241. 

 



 
  EPA-HQ-OPP-2020-0090 

21 
 

some of these opportunities in a recent white paper.37 Other areas where efficiencies can be 

secured include (but are not limited to): geographic and label restriction mitigations, existing 

federal consultations,38,39,40 and state restrictions, and a realistic application of usage data. 

2.7.1 Consideration of Previous Programmatic Consultations 

The Services often conduct programmatic consultations with various federal agencies (e.g., 

APHIS, US Forest Service, Bureau of Land Management, Army Corps of Engineers, National 

Parks Service) to address the potential effects of an action on listed species, such as   

consultations on the Mormon cricket41 and Boll Weevil Eradication Program.42 In these cases, 

consultation occurs between the USDA APHIS and appropriate Services under Section 7 of the 

ESA to evaluate whether listed species in the area covering the spatial extent of the program 

would be at risk considering the measures proposed (in this case insecticide applications). In the 

case of the Mormon cricket, consultations occurred between APHIS, and FWS under Section 7. 

The consultation impacted large amounts of pasture/rangeland, one of the key drivers for LAA 

determinations in the draft carbaryl BE. These types of consultations should be considered, and 

 
37 CLA (CropLife America). 2020. A CropLife America White Paper Report: Thinking about Step Zero. 

Washington D.C.  
38 U.S. Department of Agriculture's (USDA) Animal and Plant Health Inspection Service (APHIS) Grasshopper and 

Mormon Cricket, Final Environmental Impact Statement, January 31, 2020, https://www.aphis.usda.gov, (last 
visited 04/07/2020).  

39 The Boll Weevil Eradication Program is a cooperative effort between the U.S. Department of Agriculture 
(USDA) and State officials, who work with cotton growers to eradicate the boll weevil, in incremental stages, 
from the United States. To date, the boll weevil has been eradicated from more than 98 percent of the U.S. cotton 
acreage in 15 Southeastern and Southwestern States, as well as significant portions of 3 others. 

40 A Finding of No Significant Impact (FONSI) is the penultimate and concluding step in an environmental impact 
analysis pursuant to the National Environmental Policy Act, 42, U.S.C. §4321, et. seq. If no significant effects on 
the environment (including T&E species, are found after investigation and the drafting of an EA, the agency 
must produce a Finding of No Significant Impact (FONSI). This document explains why an action will not have 
a significant effect on the human environment and includes the EA or a summary of the EA that supports the 
FONSI determination.  

41 U.S. Department of Agriculture's (USDA) Animal and Plant Health Inspection Service (APHIS) Grasshopper and 
Mormon Cricket, Final Environmental Impact Statement, January 31, 2020, https://www.aphis.usda.gov, (last 
visited 04/07/2020).  

42 The Boll Weevil Eradication Program is a cooperative effort between the U.S. Department of Agriculture 
(USDA) and State officials, who work with cotton growers to eradicate the boll weevil, in incremental stages, 
from the United States. To date, the boll weevil has been eradicated from more than 98 percent of the U.S. cotton 
acreage in 15 Southeastern and Southwestern States, as well as significant portions of 3 others. 
https://www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-
programs/sa_environmental_assessments/ct_boll_weevil 

https://www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-programs/sa_environmental_assessments/ct_boll_weevil
https://www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-programs/sa_environmental_assessments/ct_boll_weevil
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listed species and their critical habitat that have been addressed can be removed from 

consideration in the BE a priori under applicable circumstances. Communication with the 

registrant is also important to understand how the products may be used in any of these 

programs. For example, a percentage of the annual volume of a pesticide imported / 

manufactured may be dedicated to these programs. This information can provide an additional 

line of evidence that usage data are the appropriate data to apply to estimate exposure in the BE 

and further the Agency’s and Services understanding of how a pesticide is used. 

2.8 Collaboration  

CLA members recognize the importance of collaboration on listed species issues among 

EPA, USDA, and the Services and strongly encourages increased collaboration with the 

individual registrants in the future. Registrants know their products, where the best available data 

are located, and can potentially provide expertise and knowledge on product use, sales, and other 

information that may be important to EPA’s evaluations. It is critical to all interested parties that 

there be a manageable, efficient, and defensible process to share information to address listed 

species issues in the future.  

2.9 Communication 

Communication with registrants, the Services, other sister agencies within the IWG and 

with interested stakeholders will be a critical component of developing a durable, well-accepted 

ESA review process for pesticide registration decisions.  Several areas where communication can 

be strengthened are discussed below.  

2.9.1 Modeling  

The MAGTool is a highly complex model that incorporates spatial data, effects 

thresholds, exposure models, and the probabilistic tools in the alternative analyses that EPA uses 

is using to evaluate risk to listed species. Within the time limit of the Public Comment period 

(and extension) this tool is far too complex for a full evaluation during the comment period to be 

able to evaluate fully. There is currently a lack of transparency and insufficient documentation 

on how the model functions and what the inputs to the MAGTool are; this is especially true 

when eight (8) new models were used in the Draft Carbamate BEs that to our knowledge have 
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not been previously open for public review and comment. For example, UDL generation takes a 

considerable amount of time and effort to reconstruct and/or evaluate. In this case, the fact that 

the UDLs were not available with the Draft Carbamate BEs makes it very difficult to review and 

comment on this critically important component of them. The use site generation tool43 was 

presumably used to generate the use data layers UDLs for carbaryl and methomyl. However, this 

does not appear to be clearly stated in the Draft Carbaryl BEs.  

CLA encourages EPA to simplify the MAGTool (and associated tools) if EPA intends to 

continue to use it for the final carbamate BEs and future BEs. This includes clear user 

documentation and case studies/examples of how to parameterize the model. CLA also strongly 

recommends that a workshop or course be offered to allow interested parties to better understand 

exactly how the model works and how it will be employed in future BEs. Finally, given the 

importance of these tools in the assessment process, each of them should be subjected to 

thorough review and public comment by stakeholders after these workshops are held to allow for 

improvements. 

2.9.2 Notice of the Limitations of the Biological Evaluation 

EPA should expand upon the notice provided in Section 4 (pg. 4-5 in the draft carbaryl 

BE): “Throughout this analysis, the BE maintains conservative assumptions and may overstate 

the number of species exposed to and impacted by a pesticide.” The Draft Carbamate BEs should 

better identify the considerable uncertainties in the data (e.g., effects surrogacy, spatial, exposure 

estimates) on which they are based, and the resulting compounding conservative assumptions 

EPA makes to give deference to the listed species. In future, EPA should also use the species 

status information that has been validated by FWS, in lieu of constructing its own dataset as was 

done in these Draft Carbamate BEs. To the extent that future BEs overstate potential risk to 

listed species (as CLA strongly believes they do in the Draft Carbamate BEs), the documents 

would benefit by sufficient context to allow for more meaningful understanding by both the 

 
43 https://www.epa.gov/endangered-species/models-and-tools-national-level-listed-species-biological-evaluations-

carbaryl#spatial 

https://www.epa.gov/endangered-species/models-and-tools-national-level-listed-species-biological-evaluations-carbaryl#spatial
https://www.epa.gov/endangered-species/models-and-tools-national-level-listed-species-biological-evaluations-carbaryl#spatial
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Services and the public to understand where, and if, potential risks need to be mitigated to 

protect listed species and their habitat.  

In Section 4 (draft carbaryl BE), EPA provides a summary of some of the major 

uncertainties in the spatial data, usage data, and effect thresholds, and indicates that addressing 

these uncertainties will increase confidence in the effect determinations. However, there is ample 

opportunity to reduce uncertainty for many of these variables by incorporating lines of evidence 

that can support and/or refute models (e.g., applying knowledge of the species habitats, 

probabilistic usage data methods, appropriate aquatic exposure modeling specific to species 

habitat, and others). We encourage the Agency to incorporate these lines of evidence into the BE 

methods, communicate the results with the Services and the pubic clearly, and address these 

uncertainties.      

2.9.3 Working Relationship with Stakeholders 

CLA continues to advocate for a close working relationship with EPA on topics 

associated with pesticide products. CLA represents the registrants of these products and can 

bring significant knowledge to the table on pesticide usage, integrated pest management, and 

many other issues, as can other interested stakeholders. CLA and other stakeholders can work 

with EPA by providing scientific expertise, agricultural knowledge, and information relevant to 

the scientific foundation for pesticide regulatory decisions.    

3 Conclusion 

As applied in the Draft Carbamate BEs, the Revised Method appears to require an 

extraordinary amount of data and resources without providing meaningful analysis that will 

allow the Services to perform their obligations under the ESA – making a determination as to 

whether EPA’s registration action will jeopardize the listed species or adversely affect a critical 

habitat. There continues to be a need to identify methods that will reduce the effort required to 

generate scientifically defensible effect determinations while providing realistic information to 

the Services on which they can make their required determinations in an accurate and timely 

manner. The Draft Carbamate BEs fail to provide that analysis in an efficient and informative 

way. Rather, compounding conservatism, coarse exposure modeling, and incomplete weight-of-
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evidence analyses that do not progress significantly beyond the FIFRA-based screening level 

assessment do not currently allow for this type of evaluation.  We look forward to continued 

improvements as all involved gain experience with the process.   
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May 2020 Revision Notes 

The original version of this report and accompanying datasets, released in August 2019, have been 
revised to correct a deficiency identified in the county-scale crop group usage estimation method 
that occurred in uncommon circumstances involving inconsistences of reported pesticide usage and 
independent estimates of labeled crop group use site acreage. The methodology described in this 
report was slightly modified to better handle these situations and the resulting malathion usages 
estimates were also updated to reflect this. The updates to this report and accompanying malathion 
usage datasets can be summarized as follows: 

• New text added to page 16, end of last paragraph, “We found two situations where using 
Method 3 to iteratively adjust potential and actual usage calculations that were initially 
widely diverged resulted in state crop use total estimates that varied widely from the 
original estimates. If the only crop group with reported usage in the state data has no 
potential usage in the state, after Iteration 2 the state crop group total would be set to 0 for 
all crops, so Method 2 is applied instead. If a crop group with state reported usage only has 
potential usage in counties that reported no usage, usage data would get dropped out for 
the crop group and state total usage would be reduced after Iteration 2, so Method 1 is 
applied instead.” 

• Regression statistics comparing Method 1, Method 2, and Method 3 estimates to CA PUR 
data changed slightly, so those numbers were updated in the text. 

• Regression figures comparing Method 1, Method 2, and Method 3 estimates to CA PUR 
changed slightly, so were updated. 

• Maps of usage statistics changes slightly, so all were updated. 
• The accompanying Excel spreadsheet usage results stats for several states and crop groups 

changed (slightly in most cases, modestly in a few cases) so those were updated. 
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Executive Summary 

 

This study develops a methodology for estimating pesticide usage and actual percent of potential 
usage estimates at the highest spatial resolution practical using publicly available data sources. The 
study focuses on agricultural uses of pesticides. An important objective of the study was the 
estimation of usage for individual crops or crop groups at the sub-state-level, namely county-level 
or Crop Reporting District (CRD) level. The final usage estimates generated in this assessment are 
expressed probabilistically as annual usage percentiles, which reflects both the temporal variability 
in usage and the uncertainty in the source data and estimation methods. 

Pesticide usage data represent the actual historical usage of a registered pesticide. At a minimum, 
the data describe the amount of pesticide applied over a specified geographic region over a given 
period of time. Pesticide usage data can often include the specific crop or group of crops (e.g., 
orchards and grapes) that the pesticide was applied to. Pesticide use information represents where 
and how a registered pesticide can be legally applied in accordance with its approved label. While 
pesticide use information describes how a pesticide could be potentially used, pesticide usage data 
describe how a pesticide is used in practice. Pesticide usage data is important to human health and 
ecological risk assessments, and in particular, endangered species risk assessments. Pesticide usage 
data provides the information necessary to refine the assumption that labeled pesticide use reflects 
pesticide usage on all potential use sites. 

Pesticide usage by crop group at the county-level can be estimated from best available, publicly 
available nationwide data sources. Several methods to generate these estimates were developed. 
These methods were evaluated against observed crop group county-level annual malathion usage 
from the Pesticide Use Reporting (PUR) database in California using malathion as a case study. The 
best performing method considered county-level total usage, state-level crop group usage, and 
potential usage based on CDL crop acreage and label use rates. This method resulted in strong 
agreement with the PUR across all counties and crop groups, with an R2 of 0.7978 for county-level 
estimates and 0.8419 for CRD-level estimates. The method was applied nationally using seven years 
of malathion usage data (2010-2016) resulting in probability distributions of annual usage and 
percent of potential usage. The percent of potential usage was based on crop acreage estimates 
from both CDL and USDA AgCensus and annual surveys. These usage statistics were generated for 
malathion at the county, CRD, and state-levels for nine crop groups (alfalfa corn, cotton, orchards 
and grapes, other crops, pasture and hay, rice, vegetables and fruit, and wheat) and are provided as 
Excel spreadsheets that accompany this report. Example maps of county level actual usage and 
percent of potential usage were provided to demonstrate how the data generated can be used to 
visualize the spatial distribution and magnitude of usage. Maps depicting usage associated with the 
specific locations of crops showed how locations of pesticide usage can be reconciled at the sub-
county scale. 
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The pesticide usage statistics generated in this study represent probability distributions of usage 
that can be incorporated into multiple phases of an endangered species risk assessment. The more 
conservative 90th percentile or maximum usage rates and percent of potential usage data would be 
appropriate at screening-level steps or initial refinements of exposure, while the 50th percentile 
estimates represent the most likely usage scenarios for more refined exposure and ecological 
modeling. Several examples of incorporating usage data into endangered species risk assessments 
include refined crop footprint and co-occurrence analysis, refined exposure modeling, and weight-
of-evidence analysis.  

The pesticide usage data sources and the estimation and analysis methodologies presented in this 
report represent an unbiased and reproducible approach to maximizing the utility of publicly 
available pesticide usage data in human health and ecological risk assessments, including 
endangered species assessments. This report demonstrates that a tremendous amount of valuable 
information on the spatial distribution and magnitude of pesticide usage nationwide can be 
garnered with the currently available datasets. Thoughtful application of this data will enable more 
defensible and scientifically accurate assessments concerning the potential risks of pesticide use to 
humans and the environment. 
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1. Background 

Pesticide usage data represent the actual historical usage of a registered pesticide. At a minimum, 
usage data describe the amount of pesticide applied over a specified geographic region over a given 
period of time. Pesticide usage data can often include the specific crop or group of crops (e.g., 
orchards and grapes) that the pesticide was applied to. The spatial scale of the reporting units of 
pesticide usage data can vary from the sub-county scale to the national scale, with finer spatial 
scales more desirable when available. In addition to the amount of pesticide usage (i.e., pounds or 
kilograms), the area treated with the pesticide can also be reported. Some pesticide usage 
databases will also include other information, such as the specific timing of applications, the 
method of application, and the specific product used.  

Pesticide use information represents where and how a registered pesticide can be legally applied in 
accordance with its approved label. Critical elements of pesticide use information include the 
potential use sites where the pesticide may be applied, the maximum single and annual application 
rates, the number of applications per year or crop cycle, the minimum interval between 
applications, and the permissible application methods. While pesticide use information describes 
how a pesticide could be potentially used, pesticide usage data describe how a pesticide is used in 
practice and accounts for market share relative to competitive products, climatic factors, integrated 
pest management practices, and the variability in annual pest pressures. 

Pesticide usage data is important to human health and ecological risk assessments, and in 
particular, endangered species risk assessments. The goal of an endangered species risk assessment 
is to understand whether the registration of a pesticide is likely to adversely affect a species or its 
critical habitat. The EPA’s guidance on conducting ecological risk assessments for pesticides (EPA, 
1998; EPA, 2004), including endangered species risk assessments, follows a tiered approach, 
starting with a conservative screening level risk assessment (SLERA) and moving on to 
incorporating more data and more sophisticated models and methods in a refined risk assessment. 
Screening-level environmental exposure modeling, and subsequent risk assessment methods, 
typically assume that the pesticide use described on a pesticide label reflects the actual pesticide 
usage. This implicitly assumes that all potential use sites for a pesticide receive applications at the 
maximum annual rate and for every year, often 30 consecutive years. In reality, actual pesticide 
usage is far different from this conservative assumption. Pesticide usage data provides us the 
information necessary to refine the assumption that the labeled pesticide use reflects pesticide 
usage on all potential use sites.  

The utility of actual pesticide usage data is increased when the potential pesticide usage is also 
well-understood. When both of these quantities are known, we can determine the actual usage as a 
percent of potential usage. The percent of potential usage is very similar to the Percent of Crop 
Treated (PCT) for a given pesticide. When the PCT reflects the area of crop treated at maximum 
label rates, the percent of potential usage is equivalent to the PCT. If the PCT reflects the area of 
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crop treated at less than maximum label rates, the percent of potential usage will be lower than the 
PCT. In the case where the PCT and the percent of potential pesticide usage are different, the 
percent of potential usage is a better indicator of the likely spatial extent and magnitude of 
pesticide exposure.  

Pesticide usage data in the United States is available from both publicly-available and proprietary 
sources. Publicly available sources are published by federal government agencies (US Geological 
Survey [USGS], US Department of Agriculture [USDA]) and state government agencies (California 
Department of Pesticide Regulation Pesticide Use Reporting [PUR]). The ways in which these public 
datasets can be applied in scientific research and assessments are unrestricted. Proprietary 
pesticide usage data sources, such as the AgroTrak® database of agricultural pesticide usage 
(Kynetec, 2019), come with associated costs and restrictions in how the raw data can be used and 
published. The analyses in this study will focus on publicly available usage data sources, in large 
part because the most comprehensive proprietary dataset available (Kynetec, 2019) serves as the 
source data for the most comprehensive public dataset developed by the USGS (Baker and Stone, 
2015). 

The goal of this study was to develop of a methodology for estimating pesticide usage and actual 
percent of potential usage estimates at the highest spatial resolution practical using publicly 
available data sources for agricultural pesticide uses. .  An important objective of the study was the 
estimation of usage for individual crops or crop groups at the sub-state-level, namely county-level 
or Crop Reporting District (CRD) level. The final usage estimates generated in this assessment are 
expressed probabilistically as annual usage percentiles, which reflects both the temporal variability 
in usage and the uncertainty in the source data and estimation methods. This report begins with a 
review of publicly available datasets that can be used to estimate pesticide usage and potential 
pesticide usage at the scales of interest. The sections that follow present an evaluation of the 
potential methods for estimating crop group pesticide usage at the county-scale, using the 
organophosphate insecticide malathion as an example. The results of applying the usage estimation 
method to malathion at the national-level are then presented and discussed for both actual 
pesticide usage and percent of potential usage. The discussion concludes with recommendations for 
how the pesticide usage estimates derived from the methodology developed here can be applied in 
the context of refined environmental exposure modeling and endangered species risk assessments. 
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2. Materials and Methods 

2.1. Datasets 
This first step of this study was to evaluate publicly available datasets that can be used to derive 
pesticide usage statistics at the crop group and county-scale. The pesticide usage statistics of 
interest included the annual usage (i.e., kg/year) and the percent of potential usage, where 
potential usage is defined by maximum label rates. Both national level and state-level datasets were 
considered.  In order to ensure a robust analysis, the datasets included in the study were limited to 
those that provide quantitative estimates of usage for all crops within a crop group. In addition, to 
usage datasets, crop acreage datasets were also reviewed for estimating potential pesticide usage 
by crop group, both at the state- and county-scales. As with the usage estimates, crop acreage 
estimates needed to be quantitative and complete for a crop group at either the state- or county-
scale for inclusion in this study  

2.1.1. Pesticide Usage 
The review of datasets found that the following pesticide usage datasets were sufficiently robust to 
include in this analysis: 

1. USGS Annual Pesticide Use database(Baker and Stone, 2015): State-level crop group annual 
usage and county-level total annual usage; 

2. USDA Agricultural Chemical Use Program Survey (USDA, 2019a): State-level crop/crop 
group annual usage; and the 

3. California Pesticide Use Record (PUR) database (CDPR, 2019): Subcounty-level crop/crop 
group annual usage. 

Other potential state-level datasets reviewed (e.g., Arizona (APMC, 2014), Massachusetts (MDAR, 
2019), Minnesota (MDA, 2019), New York (NYSDEC, 2016), New Hampshire (NHDA, 1997), Oregon 
(ODA, 2000), and Washington (ODA, personal communication, 2019)) did not prove to be robust 
enough to provide meaningful usage estimates at the state and/or county-levels. 

The USGS usage datasets (Baker and Stone, 2015) include both a county-level total annual usage 
estimate and a state-level annual usage estimate by crop group. For each of these estimates, the 
USGS provides a low estimate of usage (referred to as EPest-low) and a high estimate of usage 
(referred to as EPest-high). These two estimates can be thought of as providing upper and lower 
bounds on the usage estimates. These USGS datasets are derived from more detailed proprietary 
market surveys (Kynetec, 2019) and aggregated to a level that preserves the required 
confidentiality of the survey respondents. Details concerning the EPest-low and EPest-high usage 
estimates are provided in Baker and Stone (2015). As a result of their spatial and temporal 
completeness, both the USGS county-level total usage and the state-level crop group usage 
represented the most important datasets used in this assessment.  
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The USDA provides state-level estimates of pesticide usage as part of their annual Agricultural 
Chemical Use Program survey (USDA, 2019a). The survey is conducted for a selection of 
commodities on a rotating schedule (i.e., each commodity is surveyed only once every few years). 
The surveyed crops available for this analysis included: 1.) vegetables, corn & potatoes (2016), 2.) 
fruits, cotton, oats, soybeans, and wheat (2015), 3.) vegetables, corn & potatoes (2014), 4.) peanuts 
& rice (2013), 5.) soybeans and wheat (2012), 6.) fruits, barely & sorghum (2011), and 7.) 
vegetables, corn, cotton and potatoes (2010). The USDA surveys are targeted at the top-producing 
states for each commodity. As is typical of USDA survey data, the estimates of pesticide usage are 
sometimes undisclosed due to limited sample size and confidentiality requirements. While this 
information provides an indication of the presence of pesticide usage, there is no way quantify the 
amount of usage. This data source was often incomplete for a given year, state, and crop group, and 
was incorporated into the assessment only when the data provided a usage estimate that 
reasonably covered the entire crop group. 

The California Pesticide Use Record (PUR) database (CDPR, 2019) is maintained by CDPR and has 
been comprehensively recording agricultural usage of pesticides since 1990. The source data 
provides actual usage records at the one square mile section level and reports the crop, acreage, 
rate, and the date of application. The PUR database is broadly viewed as the “gold standard” when it 
comes to pesticide usage data. Thus, for the purposes of this study, the PUR will be the single 
pesticide usage dataset considered in California. 

2.1.2. Crop Acreage 
Crop acreage estimates at both the county- and state-levels are needed to estimate the potential 
pesticide usage based on the pesticide label. Three sources of crop acreage data were evaluated in 
this assessment, all of which are managed by the USDA. These include: 

1. Cropland Data Layer (Boryan et al., 2011; USDA, 2019b): a nationwide 30 m resolution 
spatial dataset of crop class, produced annually;  

2. Census of Agriculture (USDA, 2019c): county- and state-level census of crop acreage by 
county and state; and 

3. National Agricultural Statistics Service Annual Survey (USDA, 2019d): county- and state-
level survey of crop acreage by county and state. 

The USDA Cropland Data Layer (CDL) provides a seamless, national data layer depicting crop 
classes at a 30-meter (m) resolution from remote sensing data (Boryan et al., 2011; USDA, 2019b). 
This dataset is used extensively in pesticide exposure risk assessments to define the spatial extent 
of potential pesticide use sites. In this assessment, the CDL estimates of crop acreage were used to 
calculate county-level crop group pesticide usage estimates from source datasets, as well as the 
potential malathion usage by year, crop group, and county.  

In addition to the CDL, the USDA also produces crop acreage estimates based on producer surveys, 
including the Census of Agriculture (AgCensus) conducted once every five years (e.g., 2012, 2017), 
and annual commodity surveys. The AgCensus (USDA, 2019c) seeks to compile county-level 
acreage (harvested acres are reported) for nearly all agricultural crops grown in the US. The annual 
commodity surveys (USDA, 2019d) are less comprehensive than the AgCensus, but can provide 
useful information for the more dominant crops and production regions. They also provide 
estimates of planted acreage, which can be a better indicator or potential pesticide usage than the 
harvested acres reported in AgCensus. The biggest challenge with the use of the AgCensus and 
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National Agricultural Statistics Service (NASS) survey data is missing or undisclosed data. Missing 
data is most common for the years of NASS survey data (years when the full AgCensus does not 
occur), and typically arises for lower acreage crops and counties where acreage is low for the major 
crops. Undisclosed data occurs when USDA determines that the number of samples in their 
survey/census is small enough that confidentiality concerns would arise in reporting actual values 
(e.g., acres planted or harvested) for a particular commodity and county or state. In these cases, 
USDA only reports that a commodity occurred in the county/state, but the actual values (e.g., 
acreages) are not disclosed. The methods developed in this study for estimating county and crop 
group level pesticide usage, as well as potential usage, are heavily dependent on a complete picture 
of the crop acreage at both the state- and county-levels. For this reason, the application of the USDA 
survey estimates of crop acreage were used in a more limited way than the USDA CDL estimates of 
crop acreage. The details of how each dataset was incorporated into the analysis are provided in the 
methodology discussions that follow.  

2.2. Methods 
The potential pesticide usage by county and crop group is critical to understanding the context of 
actual pesticide usage. For example, usage of 500 kilograms could represent nearly 100% of 
potential use sites being treated at the maximum label rate, or it could represent less than 1% of 
potential use sites being treated. Understanding this percent of potential usage is essential to 
interpreting screening level exposure and risk assessments, as well as parameterizing models 
applied in refined exposure modeling and analyses. In this assessment, potential pesticide usage 
estimates were derived using both CDL-based crop acreages and crop acreages adjusted using 
AgCensus and NASS Survey data (USDA “Survey-Adjusted”). Given the uncertainty in both the CDL 
and AgCensus/NASS Survey data, both acreage estimates were treated with equal likelihood when 
calculating potential pesticide usage. These two calculation methods are described in the sections 
that follow. 

Estimating actual pesticide usage statistics at the county and crop group level is a primary goal of 
this assessment and method development. The USGS pesticide usage data at the state/crop group 
level and the county/total level, along with crop group acreage estimates from CDL, provides 
several options for making county/crop group estimates. The USDA chemical use survey data, 
which provides only state-level crop group use for a subset of crop groups each year, is more 
limited in how county/crop group level use can be estimated. Several different methods were 
evaluated for developing these county/crop group estimates using the USGS usage data. These 
estimates were evaluated in the State of California and compared with measured county/crop 
group level malathion usage from the PUR to assess the robustness of each estimation 
methodology. In these evaluations, the PUR data was aggregated to be analogous to the USGS EPest-
Low/EPest-High data, resulting in total pesticide usage by year at the county-level and crop group 
usage by year at the state-level (note that EPest-Low and EPEst-High are the same in California). 
This “surrogate” USGS data was then used as the basis to apply and evaluate three different 
disaggregation methods to estimate pesticide crop group usage at the county-level. California is the 
only state where these methods could be evaluated against ground truth data, i.e., the PUR.  The 
results of these comparisons informed the choice of a methodology applied to the entire US. These 
methods and the comparisons with PUR are discussed following the potential pesticide usage 
estimate sections.  
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2.2.1. Potential Pesticide Usage by Crop Group and County, CDL-Based 
The labels of two products containing malathion as the sole active ingredient were used to identify 
the crops to which this pesticide can be used, namely: Fyfanon® 57EC (EPA Reg. No. 279-3607; 
formerly EPA Reg. No. 67760-40)and Fyfanon® ULV AG (EPA Reg. No. 279-3450; formerly 67760-35). 
Annual maximum application rates (in a.i. lbs/acre) for each of the crops were also obtained from 
these labels. In cases where the labels listed different application rates for the same crop, the 
highest value of the set was selected to represent the use pattern. The CDL was then used to 
estimate county- and state-level crop group acreage for malathion-labeled crops between 2010–
2016. As a first step, each malathion-approved crop was matched to one or more of the crop classes 
in the CDL datasets. Most of the crops in the malathion labels were matched to specific crop classes 
in the CDL dataset. The “Grassland/Pasture” (code 176) CDL crop class was excluded from this 
analysis; this crop class includes both managed and naturally occurring grasslands and would 
require additional analysis to differentiate these potential use sites. Next, all CDL classifications 
representing malathion labeled crops were assigned to one of the USGS crop groups used in their 
pesticide usage estimates. These malathion-labeled crops, CDL crop classes, USGS crop groups, and 
annual use rates are summarized in Appendix A, Table A- 1. 

Using ArcGIS 10.5 and ArcPy, spatial analysis was conducted to determine the crop acreages, and 
ultimately the potential annual malathion usage for each USGS crop group, county, and year 
combination. First, a spatially explicit malathion crop footprint was produced from each year of 
CDL by extracting and reclassifying those classes to one of the crops potentially treated with 
malathion into a new raster dataset. Each crop footprint raster plus a feature class depicting the 
county boundaries were added as inputs to the tabulate area tool in ArcGIS. This tool was then used 
to determine the crop group acreage for each county in the contiguous United States across all 
seven years evaluated (2010–2016). Using these crop acreage estimates and the following equation, 
malathion annual potential usage was estimated for each USGS crop group, county, and year 
combination: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝑈𝑈𝑃𝑃𝑈𝑈𝑃𝑃 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 = �𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑐𝑐𝐶𝐶𝑃𝑃𝑃𝑃𝑈𝑈𝑃𝑃𝑖𝑖,𝑗𝑗,𝑐𝑐 ×  max𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝐺𝐺𝑈𝑈𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐

𝑛𝑛

𝑐𝑐=1

 

where, 
      c = individual CDL crop class 
      i = county 
      j = year 
      n = number of individual crop classes in crop group 

2.2.2. Potential Pesticide Usage by Crop Group and County, USDA Survey-Adjusted 
The USDA AgCensus and NASS Surveys provide valuable estimates of crop acreage at the county- 
and state-levels. As discussed previously, the shortcoming of these datasets for this assessment is 
that acreages can often be undisclosed due to confidentiality requirements, making estimates of 
crop group total acreage and potential pesticide use incomplete. Nevertheless, we recognize the 
CDL estimates of crop group acreage are imperfect, thus incorporating survey-based crop group 
acreage estimates into this assessment will help in accounting for uncertainty the CDL data. 

The USDA AgCensus and NASS Survey data were used to calculate state-level crop-group acreage 
bias factors that were then used to adjust the CDL-based crop group acreage values at the county-
level. State-level bias factors were chosen instead of county-level bias factors because the frequency 
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of undisclosed data at the state-level was much less than undisclosed data at the county-level. In 
addition, two years of AgCensus/NASS survey data were considered, 2012 and 2017. Only these 
years were selected because they correspond with the AgCensus, which contains much more 
complete data than years with only NASS Survey data. 

For each year, state, and crop group, the total crop group acreage was calculated. Information from 
the AgCensus served as the primary data in this calculation. The acreage of each crop was 
represented by the “Area Harvested” (field crops, vegetables, other crops), “Area Grown” (berries), 
or “Area Bearing & Non-Bearing” (orchards). In cases where a crop had disclosed data in the NASS 
Survey dataset, then the NASS Survey “Area Planted” data was used in place of the AgCensus “Area 
Harvested” data. The choice to use “Area Planted” in place of “Area Harvested” was based on 
comparison with CDL, which showed better agreement with “Area Planted”, and to be more 
conservative in estimating the area of potential pesticide use. In cases where AgCensus was NASS 
Survey was undisclosed, a nominal area of 160 acres was assigned.  

Bias factors for USDA Survey (BiasFactor) crop group acreage compared to CDL-based crop acreage 
were calculated at the state and crop group level by averaging the ratios of USDA Survey acreage to 
CDL acreage based on 2012 and 2017 estimates. We then used these bias factors to calculate 
additional estimates of potential pesticide use at the county and crop group level following the 
equation below: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝑈𝑈𝑃𝑃𝑈𝑈𝑃𝑃 − 𝑆𝑆𝐺𝐺𝐶𝐶𝑆𝑆𝑃𝑃𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝑈𝑈𝑃𝑃𝑃𝑃𝐴𝐴𝑐𝑐𝑐𝑐,𝑖𝑖,𝑗𝑗
= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝑈𝑈𝑃𝑃𝑈𝑈𝑃𝑃 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐,𝑖𝑖,𝑗𝑗 ∗ BiasFactor𝑐𝑐𝑐𝑐,𝑠𝑠 

where, 
 cg = individual CDL crop class 
       i = county 
       j = year 
       s = state 

2.2.3. Actual Pesticide Usage by Crop Group and County 
State and county-level malathion usage data from multiple sources were used to derive  the county-
level usage estimates for each crop group. Three different county-level crop group usage estimation 
methods were applied and evaluated in California . The starting point of usage estimates for each 
method was state-level crop group usage by year and county-level total usage by year derived by 
aggregating PUR data. This starting point is analogous to the USGS EPest-Low/EPest-High data and 
was used in place of the USGS data to allow for a more direct comparison with PUR data and a more 
accurate performance evaluation of each estimation method. All three methods incorporated crop 
group acreage estimated from CDL. Crop group acreage from AgCensus/NASS Survey data were not 
used in these actual usage estimates due to the missing/undisclosed data limitations of these 
datasets at the county-level. The best performing method of the three was then applied to all the 
lower 48 states. 

2.2.3.1. Actual Pesticide Usage Methods 1 Calculation 
For the first method, the county-level crop group usage was calculated as a fraction of the state-
level crop group usage, which was assumed to be proportional to the fraction of crop group acreage 
in the county relative to the state-level crop group acreage. This method maintains the source data’s 
state-level crop group usage estimate but is not necessarily consistent with the source data’s 
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county-level total usage estimate. The Method 1 estimate was calculated according to the following 
equation:  

𝐶𝐶𝐶𝐶𝐺𝐺𝑃𝑃𝑃𝑃𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑈𝑈𝑈𝑈𝑃𝑃𝑈𝑈𝑃𝑃 −𝑀𝑀1𝑖𝑖,𝑗𝑗 =
𝐶𝐶𝐶𝐶𝐺𝐺𝑃𝑃𝑃𝑃𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝐴𝐴𝑐𝑐𝐶𝐶𝑃𝑃𝑃𝑃𝑈𝑈𝑃𝑃𝑖𝑖,𝑗𝑗
𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝐴𝐴𝑐𝑐𝐶𝐶𝑃𝑃𝑃𝑃𝑈𝑈𝑃𝑃𝑗𝑗

 × 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑈𝑈𝑈𝑈𝑃𝑃𝑈𝑈𝑃𝑃𝑗𝑗  

where, 
      i = county 
      j = year 

2.2.3.2. Actual Pesticide Usage Methods 2 Calculation 
For the second method, the county-level crop group usage was calculated as a fraction of the total 
county-level usage which was assumed to be proportional to the fraction of potential crop group 
usage in the county relative to the total (all crop groups) potential usage in the county. This method 
maintains the source data’s county-level total usage estimate but is not necessarily consistent with 
the source data’s state-level crop group usage estimate. The Method 2 estimate was calculated 
according to the following equation: 

𝐶𝐶𝐶𝐶𝐺𝐺𝑃𝑃𝑃𝑃𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑈𝑈𝑈𝑈𝑃𝑃𝑈𝑈𝑃𝑃 −𝑀𝑀2𝑖𝑖,𝑗𝑗 = � 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝑈𝑈𝑠𝑠𝑃𝑃𝑐𝑐𝑃𝑃𝑖𝑖,𝑗𝑗
𝑇𝑇𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝑈𝑈𝑠𝑠𝑃𝑃𝑐𝑐𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗

 × 𝑇𝑇𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝑐𝑐𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝑈𝑈𝑈𝑈𝑃𝑃𝑈𝑈𝑃𝑃𝑖𝑖,𝑗𝑗�  

where, 
      i = county 
      j = year 

2.2.3.3. Actual Pesticide Usage Methods 3 Calculation 
The Method 1 and Method 2 calculations each have their shortcomings. Neither of the two consider 
both the state-level crop group usage information and the county-level total usage data together. To 
improve upon these two methods, a third approach was developed to incorporate both the state-
level and county-level data. This approach, Method 3, begins with the Method 2 estimate and then 
iteratively adjusts those county-level crop group usage estimates to conform to the state-level crop 
group usage estimates. The mechanics of this approach are best demonstrated though the example 
shown in Table 1 below. In this example, the source data is highlighted in red. The table includes 
the county-level total usage estimates for four counties, as provided by the USGS pesticide usage 
datasets. It also includes the state-level usage estimates by crop group for three crop groups, which 
was also provided from USGS pesticide use datasets. In examining this portion of , we see that 
summing the county-level total usage results in 2,000 (kg) of usage, and that summing the state-
level crop group usage also results in 2,000 (kg) of usage. The third piece of source data, as 
presented, is the county-level crop group potential usage estimates, derived from the county-level 
crop acreages determined from CDL and the labeled maximum annual application rates for the 
pesticide.  

The first derived portion of the calculation is the Method 2 estimates shown at the top right of Table 
1 in blue. These county-level crop group estimates maintain the county-level total usage estimates 
from the source data; however, the resulting state-level crop group usage deviates from the source 
data, sometimes significantly. For example, the Method 2 calculations result in an estimated 700 
(kg) of usage on Crop3; however, the source data reported 400 (kg) of usage on Crop3. Method 3 
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addresses this inconsistency by rescaling the county-level crop group estimates back towards the 
state-level crop group estimates.  

In Iteration 1, the county-level crop group usage estimates from Method 2 are multiplied by the 
ratio of the source data state-level crop group usage to the state-level crop group usage estimated 
from Method 2. For example, for Crop1 in County 2, the Method 2 estimate of 250 (kg) is multiplied 
by (800/750) to get an adjusted estimate of 267 (kg). Similarly, for Crop 3 in County 2, the Method 
2 estimate of 250 (kg) is multiplied by (400/700) to get an adjusted estimate of 143 (kg). In making 
this adjustment, as presented in the table, the estimated state-level crop group usage is now equal 
to the source data, with a bias of 1.0 (no bias) for all crop groups. However, our county-level total 
usage estimate at Iteration 1 is now not equivalent to our source data, with bias ranging from 0.82 
(County 2) to 1.45 (County 1).  

Iteration 2 adjusts the estimates from Iteration 1 back toward the source data county-level total 
usage estimates. Here, the county-level crop group usage estimates from Iteration 1 are multiplied 
by the ratio of the source data county-level total usage to the county-level total usage estimated at 
Iteration 1. For example, for Crop1 in County 2, the Iteration 1 estimate of 267 (kg) is multiplied by 
(500/410) to get an adjusted estimate of 326 (kg). Similarly, for Crop 3 in County 2, the Iteration 1 
estimate of 143 (kg) is multiplied by (500/410) to get an adjusted estimate of 174 (kg). In making 
this Iteration 2 adjustment, the estimated county-level total usage is now equal to the source data, 
with a bias of 1.0 (no bias) for all crop groups, as shows in Table 1. However, our state-level crop 
group usage estimate at Iteration 2 is now not equivalent to our source data, with bias ranging from 
0.92 (Crop2) to 1.06 (Crop3).  

Subsequent iterations were performed, alternating between adjusting to the state-level crop group 
usage and the county-level total usage, until the bias in both quantities stabilized near 1.0. In this 
example in Table 1, both sets of bias values converge near 1.00 after 9 iterations. Notice that the 
usage estimates at Iteration 9 look quite different than they did after only Method 2 was applied. 
Although not shown here, a purely Method 1 estimate would have resulted in very different county-
level crop group estimates as well. It should be noted that while Method 3 results in a balance 
between honoring both scales of source data (county-level total and state-level crop group), it is not 
guaranteed to achieve a “perfect” estimate. Rather, it represents a way in which these readily 
available source datasets can be combined to make a well-informed estimate of crop group specific 
usage at a higher spatial resolution than is publicly available. We found two situations where using 
Method 3 to iteratively adjust potential and actual usage calculations that were initially widely 
diverged resulted in state crop use total estimates that varied widely from the original estimates. If 
the only crop group with reported usage in the state data has no potential usage in the state, after 
Iteration 2 the state crop group total would be set to 0 for all crops, so Method 2 is applied instead. 
If a crop group with state reported usage only has potential usage in counties that reported no 
usage, usage data would get dropped out for the crop group and state total usage would be reduced 
after Iteration 2, so Method 1 is applied instead.  
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Table 1. Method 3 County and Crop Group Level Actual Pesticide Usage Calculation Example. 
County TotalUse Crop1Pot.Use Crop2Pot.Use Crop3Pot.Use TotalPot.Use Method 2 Estimate 

1 100 0 1000 0 1000 County Crop1Use Crop2Use Crop3Use Total Use 
2 500 1000 0 1000 2000 1 0 100 0 100 
3 1000 2000 1000 1000 4000 2 250 0 250 500 
4 400 0 1000 1000 2000 3 500 250 250 1000 

State   Crop1Act.Use Crop3Act.Use Crop3Act.Use Total Use 4 0 200 200 400 
1   800 800 400 2000 Total 750 550 700 2000 

    Iteration 1 Cnty Bias Iteration 1 
          1.45 1 0 145 0 145 
          0.82 2 267 0 143 410 
          1.04 3 533 364 143 1040 
    State Crop Grp. Bias 1.01 4 0 291 114 405 
    1.00 1.00 1.00   Total 800 800 400 2000 
    Iteration 2 Cnty Bias Iteration 2 
          1.00 1 0 100 0 100 
          1.00 2 326 0 174 500 
          1.00 3 513 350 137 1000 
    State Crop Grp. Bias 1.00 4 0 287 113 400 
    1.05 0.92 1.06   Total 838 737 425 2000 
    Iteration 3 Cnty Bias Iteration 3 
          1.09 1 0 109 0 109 
          0.95 2 311 0 164 475 
          1.00 3 489 380 129 998 
    State Crop Grp. Bias 1.05 4 0 312 106 418 
    1.00 1.00 1.00   Total 800 800 400 2000 
    Iteration 4 Cnty Bias Iteration 4 
          1.00 1 0 100 0 100 
          1.00 2 327 0 173 500 
          1.00 3 490 380 130 1000 
    State Crop Grp. Bias 1.00 4 0 298 102 400 
    1.02 0.97 1.01   Total 817 779 404 2000 
    Iteration 5 Cnty Bias Iteration 5 
          1.03 1 0 103 0 103 
          0.98 2 320 0 171 491 
          1.00 3 480 391 128 999 
    State Crop Grp. Bias 1.02 4 0 307 101 407 
    1.00 1.00 1.00   Total 800 800 400 2000 
    Iteration 6 Cnty Bias Iteration 6 
          1.00 1 0 100 0 100 
          1.00 2 326 0 174 500 
          1.00 3 480 391 128 1000 
    State Crop Grp. Bias 1.00 4 0 301 99 400 
    1.01 0.99 1.00   Total 806 792 401 2000 
    Iteration 7 Cnty Bias Iteration 7 
          1.01 1 0 101 0 101 
          0.99 2 323 0 174 497 
          1.00 3 477 395 128 1000 
    State Crop Grp. Bias 1.01 4 0 304 98 403 
    1.00 1.00 1.00   Total 800 800 400 2000 
    Iteration 8 Cnty Bias Iteration 8 
          1.00 1 0 100 0 100 
          1.00 2 325 0 175 500 
          1.00 3 477 395 128 1000 
    State Crop Grp. Bias 1.00 4 0 302 98 400 
    1.00 1.00 1.00   Total 802 797 401 2000 
    Iteration 9 Cnty Bias Iteration 9 
          1.00 1 0 100 0 100 
          1.00 2 324 0 174 499 
          1.00 3 476 396 128 1000 
    State Crop Grp. Bias 1.00 4 0 303 98 401 
    1.00 1.00 1.00   Total 800 800 400 2000 
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2.2.3.4. Evaluation of Actual Usage Estimates Against Known Actual Usage, California PUR 
The methods described in the previous three sections (Method 1, Methods 2, and Method 3) were 
applied in California and compared against the PUR data. This analysis required the following steps 
to prepare the data for comparison. 

1. The PUR data for malathion labeled crops were assigned to the USGS crop groups and 
aggregated to the state-level. This data was then analogous to the USGS state-level crop 
group usage estimates. 

2. The PUR data for malathion labeled crops were aggregated to the county-level for all of the 
USGS crop groups combined. This data was then analogous to the USGS county-level total 
usage estimates. 

3. The PUR data for malathion labeled crops were assigned to the USGS crop groups and 
aggregated to the county-level. This data the represents the “true” actual usage at the 
county and crop group level and is therefore the data that our usage estimates will be 
compared to. 

The estimates from each of the three county-level crop group estimation methods were compared 
to the “true” PUR estimates by pairing each county crop group usage estimate for every county and 
year (2010–2016) and performing a linear regression. The county-level estimates and actual PUR 
usage were then aggregated to the CRD level, and the pairs of usage for every CRD and year were 
also compared in a linear regression. The coefficient of determination (R2) and the slope of the 
linear regression (b) for the different estimation methods were calculated to assess the goodness of 
fit of each method.  

Figure 1, Figure 2, and Figure 3 show the linear regression of the estimated county-level crop group 
malathion usage versus the observed PUR malathion usage for Method 1, Method 2, and Method 3 
respectively. The poorest estimates were based on Method 1, with an R2 statistic of 0.1293 and 
linear regression slope of 0.55. The estimates based on Method 2 were considerably improved, with 
an R2 statistic of 0.4122 and linear regression slope of 0.9952. The usage estimates were further 
improved following Method 3, with an R2 statistic of 0.7978 and linear regression slope of 1.1103. 
Overall, Method 3 resulted in a very strong agreement with the observed county-level crop group 
annual malathion usage. The linear regression slope of 1.1103 indicates that Method 3 slightly 
underestimated the observed usage from PUR; however, this is largely driven by the highest usage 
values. As seen in Figure 3, Method 3 often resulted in county-level usage estimates when the PUR 
reported zero usage. It was much less common for Method 3 to predict zero usage and the PUR to 
show non-zero usage.  

Figure 4, Figure 5, and Figure 6 show the linear regression of the estimated county-level crop group 
malathion usage versus the observed PUR malathion usage for Method 1, Method 2, and Method 3 
respectively. The ranking of the three estimation methods for the CRD-level estimates are the same 
as for the county-level estimates, with Method 3 far outperforming the other two methods. In 
addition, R2 statistics and linear regression slope improve for all three methods for the CRD 
estimates compared to the county-level estimates. The R2 for Method 3 increased from 0.7978 to 
0.8419 and the linear regression slope decreased from 1.1083 to 1.0475. This improvement is 
expected, and is a result of, the lower variability in usage estimates when aggregating to larger 
spatial units.  
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Method 3 was determined to be the best estimation method and was applied for all subsequent 
county-level crop group actual usage estimates in this assessment for malathion using the USGS 
EPest-low and EPest-high source datasets. Method 1 was applied for the county-level crop group 
usage estimates using the USDA Chemical Use Survey data, because the USDA data did not include 
the needed county-level total usage data required by Method 3. The USDA data represented a much 
smaller number of source usage estimates compared to the USGS dataset (only 27 state-level crop 
group USDA usage estimates in total from 2010 - 2016). In California, the PUR data was used for all 
the county-level actual usage estimates by crop group.  

This demonstration of the county-level and CRD-level crop group usage estimations in California 
represents one of the most complex agricultural and pesticide usage landscape in the United States, 
where cropping patterns and pest pressure are spatially highly variable. Yet, the estimation method 
presented performed extremely well. In more homogeneous states, in terms of climate, agronomy, 
and biology, the pesticide usage estimation method presented is expected to perform even better. 

 

Figure 1. Linear Regression of Method 1 County-Level Crop Group Annual Malathion Usage Estimates and PUR Observed County-
Level Crop Group Malathion Usage.  
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Figure 2. Linear Regression of Method 2 County-Level Crop Group Annual Malathion Usage Estimates and PUR Observed County-
Level Crop Group Malathion Usage. 

 
Figure 3. Linear Regression of Method 3 County-Level Crop Group Annual Malathion Usage Estimates and PUR Observed County-
Level Crop Group Malathion Usage. 
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Figure 4. Linear Regression of Method 1 CRD-Level Crop Group Annual Malathion Usage Estimates and PUR Observed CRD-Level 
Crop Group Malathion Usage. 

 

Figure 5. Linear Regression of Method 2 CRD-Level Crop Group Annual Malathion Usage Estimates and PUR Observed CRD-Level 
Crop Group Malathion Usage. 
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Figure 6. Linear Regression of Method 3 CRD-Level Crop Group Annual Malathion Usage Estimates and PUR Observed CRD-Level 
Crop Group Malathion Usage. 

2.2.4. Actual Percent of Potential Pesticide Usage 
The actual percent usage calculation is the primary indicator of how much pesticide usage is 
occurring relative to the potential annual usage allowed by the pesticide label. This quantification is 
critical in a refined ecological (endangered species) or human health risk assessment, whereas 
screening level exposure and risk analyses assume 100% of potential use sites are treated at the 
maximum annual pesticide application rates. The actual percent usage estimates can be used 
quantitatively in a probabilistic exposure assessment or qualitatively to put into context screening 
level exposure estimates or risk assessment results. These actual percent usage estimates can also 
be used as a component of a formal weight-of-evidence analysis.  

Actual percent of potential usage calculations were developed by county, crop group, and year 
based on actual crop group usage estimates from: 

1. USGS EPest-low (Method 3), 
2. USGS EPest-high (Method 3), and 
3. USDA Chemical Use Survey (Method 1). 

and based on potential crop group usage estimates from: 

1. CDL-based potential pesticide usage, and 
2. USDA survey adjusted potential pesticide usage. 

The actual crop group usage estimates by crop group were capped at the higher of the potential 
crop usage from the CDL-based and USDA survey adjusted estimates. This reduced the occurrence 
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of anomalous percent of potential usage calculations which was occasionally occurring for low 
usage counties and crop groups. These actual percent usage calculations by county, crop group, and 
year for multiple estimates of actual malathion use estimates using the following equation: 

𝐶𝐶𝐶𝐶𝐺𝐺𝑃𝑃𝑃𝑃𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑐𝑐𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝐶𝐶𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝑈𝑈𝑃𝑃𝑈𝑈𝑃𝑃𝑖𝑖,𝑗𝑗 = � 𝐴𝐴𝑐𝑐𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑈𝑈𝑠𝑠𝑃𝑃𝑐𝑐𝑃𝑃 𝐸𝐸𝑠𝑠𝑃𝑃𝑖𝑖𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗
𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑈𝑈𝑠𝑠𝑃𝑃𝑐𝑐𝑃𝑃𝑖𝑖,𝑗𝑗

� ∗ 100  

where, 
 i = year 
 j = county 

CRD-level and state-level actual percent of potential usage estimates were calculated by first 
aggregating the actual and potential usage at the county-level up to the CRD or state-levels. The 
calculations were then made according to the following equations: 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑐𝑐𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝐶𝐶𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝑈𝑈𝑃𝑃𝑈𝑈𝑃𝑃𝑖𝑖,𝑗𝑗 = � 𝐴𝐴𝑐𝑐𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑈𝑈𝑠𝑠𝑃𝑃𝑐𝑐𝑃𝑃 𝐸𝐸𝑠𝑠𝑃𝑃𝑖𝑖𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗
𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑈𝑈𝑠𝑠𝑃𝑃𝑐𝑐𝑃𝑃𝑖𝑖,𝑗𝑗

� ∗ 100  

where, 
 i = year 
 j = CRD 

𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑐𝑐𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝐶𝐶𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝑈𝑈𝑃𝑃𝑈𝑈𝑃𝑃𝑖𝑖,𝑗𝑗 = � 𝐴𝐴𝑐𝑐𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑈𝑈𝑠𝑠𝑃𝑃𝑐𝑐𝑃𝑃 𝐸𝐸𝑠𝑠𝑃𝑃𝑖𝑖𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗
𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐶𝐶𝐶𝐶𝐺𝐺𝐶𝐶 𝑈𝑈𝑠𝑠𝑃𝑃𝑐𝑐𝑃𝑃𝑖𝑖,𝑗𝑗

� ∗ 100  

where, 
 i = year 
 j = state 

2.2.5. Crop Group Usage Statistics by and County, CRD, and State 
For each county (or CRD or state) and crop group combination, up to three usage estimates were 
calculated, dependent on the availability of USDA survey data, for seven years, resulting in up to 21 
estimates. The usage statistics in California were based solely on the PUR; therefore, seven annual 
usage estimates were derived for each county/CRD/state and crop group. All annual estimates for a 
given crop group and county were combined into a population of estimates to calculate the 
minimum, 10th percentile, 25th percentile, 50th percentile, 75th percentile, 90th percentile, and 
maximum annual usage estimate in (kg/yr).  

Statistics on the percent of potential usage estimates were based on twice as many estimates as the 
actual usage statistics because two different potential crop group usage estimates were used (CDL-
based and USDA Survey adjusted). This resulted in up to 42 estimates for each county/CRD/state 
and crop group. In California, where only the PUR was used for actual usage estimates, the inclusion 
of two different potential usage estimates resulted in 14 different percent of potential usage 
estimate per county/CRD/state. 
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3. Results and Discussion 

One of the primary deliverables from this study is the methodology for estimating crop group actual 
usage and crop group percent of potential usage at the county and CRD scales described in the 
methodology section of this report. Another primary deliverable is the application of this 
methodology to malathion and the resulting usage statistics. These results, applied nationwide, are 
provided as electronic data deliverables that accompany this report as Excel spreadsheet tables, as 
the volume of data makes it impractical to provide these results as tables within this report. Map 
examples and a discussion of the resulting malathion usage estimates are provided in the sections 
that follow. 

3.1. Usage by County and Crop Group 
Figure 7–Figure 14 show the 50th and 90th percentile estimates of malathion annual usage for corn, 
cotton, orchards and grapes, and vegetables and fruits for the years 2010–2016 (note that 
additional malathion crop groups are reported in accompanying Excel spreadsheet tables). For all 
crop groups mapped, the distributions of both 50th and 90th percentile estimates are strongly right-
skewed, with the majority of counties having no or low (< 10 kg) total use. Counties with high use 
(> 1,000 kg) tend to be clustered in regions within a small number of states. Of the crop groups 
shown, the highest usage occurs on orchards and grapes and vegetables and fruits. Figure 15 and 
Figure 16 show the 90th percentile annual total usage of orchards and grapes mapped on to the CDL 
orchards and grapes footprint in Florida. In Figure 16, a zoom-in on central Florida, we can see the 
spatial detail at which the locations of malathion applications can be realized. 

3.2. Percent of Potential Usage by County and Crop Group 
Figure 17–Figure 24 show the 50th and 90th percentile estimates of actual percent of potential 
malathion annual usage for corn, cotton, orchards and grapes, and vegetables and fruits for the 
years 2010–2016 (note that additional malathion crop groups are reported in accompanying Excel 
spreadsheet tables). For all crop groups mapped, the distributions of 50th percentile estimates are 
strongly right-skewed, with most counties having no or low (< 5%) percent of potential usage. For 
the 90th percentile estimates, we see a broader number of counties where percent of potential 
usage is 20% or greater, particularly for the orchards and grapes and the vegetables and fruits 
(Figure 22 and Figure 24). It is important to consider the percent of potential usage in conjunction 
with the actual usage, as many counties with higher percent of potential usage (> 20%) have very 
low actual usage (in kg/yr). For example, the 90th percentile usage on vegetables and fruits in Texas 
and Oklahoma (see Figure 14) rarely exceeds 100 kg/yr per county, yet the 90th percentile percent 
of potential usage commonly exceeds 20% (see Figure 24). This is a result of the low acreage of the 
vegetable and fruit crops in those counties and the estimated malathion usage on those crops from 
the source usage datasets. 
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Figure 7. 50th Percentile Estimate of Malathion Annual Usage for Corn (2010-2016). 
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Figure 8. 90thPercentile Estimate of Malathion Annual Usage for Corn (2010-2016). 
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Figure 9. 50th Percentile Estimate of Malathion Annual Usage for Cotton (2010-2016). 
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Figure 10. 90th Percentile Estimate of Malathion Annual Usage for Cotton (2010-2016). 
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Figure 11. 50th Percentile Estimate of Malathion Annual Usage for Orchards and Grapes (2010-2016). 
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Figure 12. 90th Percentile Estimate of Malathion Annual Usage for Orchards and Grapes (2010-2016). 
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Figure 13. 50th Percentile Estimate of Malathion Annual Usage for Vegetables and Fruits (2010-2016). 
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Figure 14. 90th Percentile Estimate of Malathion Annual Usage for Vegetables and Fruits (2010-2016). 
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Figure 15. Florida 90th Percentile Estimate of Malathion Annual Usage for Orchards and Grapes, Mapped to CDL Crop Footprint. 
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Figure 16. Central Florida Focus, 90th Percentile Estimate of Malathion Annual Usage for Orchards and Grapes, Mapped to CDL Crop Footprint. 
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Figure 17. 50th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Corn (2010-2016). 
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Figure 18. 90th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Corn (2010-2016). 
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Figure 19. 50th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Cotton (2010-2016). 
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Figure 20. 90th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Cotton (2010-2016). 
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Figure 21. 50th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Orchards and Grapes (2010-2016). 
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Figure 22. 90th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Orchards and Grapes (2010-2016). 
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Figure 23. 50th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Vegetables and Fruits (2010-2016). 
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Figure 24. 90th Percentile Estimate of Actual Percent of Potential Malathion Annual Usage for Vegetables and Fruits (2010-2016). 
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3.3. Application of Usage Data in Endangered Species Risk 
Assessments 

The county-level crop group pesticide usage statistics resulting from the data analysis approach 
presented in this report can be applied to refine endangered species risk assessments in multiple 
ways. This includes both quantitative and qualitative analysis methods that can be considered at 
multiple point during the risk assessment process. Several example applications and approaches 
are discussed here. 

3.3.1. Refinement of Pesticide Use Footprints 
The pesticide usage data can be applied directly in refinement of pesticide use footprints by crop 
group at the county-level. This can be done deterministically or probabilistically. A deterministic 
approach would first require determination of an appropriate exceedance probability. The most 
conservative approach would be to choose the maximum, while a slightly less conservative 
approach would be to choose the 90th percentile. The pesticide usage associated with, for example, 
the 90th percentile would then describe which counties the pesticide is expected to be used in for 
each crop group. For counties with no expected usage for a given crop group, those potential 
pesticide use sites would be removed from the pesticide use footprint. The resulting refined 
pesticide use site footprints would then be incorporated directly into a co-occurrence analysis with 
species ranges and critical habitats. This deterministic type of approach would be appropriate at a 
later stage in the screening level risk assessment or as an early refinement step. 

A probabilistic approach to refining pesticide use footprints by crop group would result in 
footprints comprised of a range of use likelihoods. The approach would again begin by 
determination of an appropriate pesticide usage exceedance probability, such as the 90th percentile, 
or 50th percentile if the most likely pesticide use is desired. The associated percent of potential 
pesticide usage data by county ad crop group can then be used as an overlay to the use footprint to 
assign use probabilities at the county level. Use probabilities can also be considered as being 
analogous to Percent Crop Treated for each county and crop group. The resulting refined pesticide 
use footprints, which include a likelihood of usage, can be applied in a co-occurrence analysis with 
species ranges and critical habitats, providing a much more comprehensive understanding of 
probability of pesticide usage impacting a species.   

3.3.2. Refinement of Pesticide Exposure Distributions 
Refined phases of endangered species risk assessments require spatially explicit and species-
specific predictions of exposure. These exposure predictions must also be represented 
probabilistically to account for the variability in climate, landscape conditions, agronomics, habitat 
conditions, and pesticide usage within a species range and critical habitat. The pesticide usage 
statistics resulting from the methods developed in this study can be used directly to parameterize 
exposure models used in refined risk assessment methods. This applies to both terrestrial and 
aquatic species and for species found in static and flowing water bodies.  

Refinement of terrestrial species exposure modeling can be achieved by quantifying the fraction of 
a species range receiving pesticide applications on different potential use sites. The percent of 
potential pesticide usage statistics developed in this assessment describe the fraction of potential 
pesticide use sites treated at the maximum label rate. A target percentile of usage, such as the 90th 
percentile which is equivalent to a 10% exceedance probability, can be selected to achieve the 
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desired level of usage conservatism and applied quantitatively to terrestrial species exposure 
scenarios. This quantification can directly translate to the fraction of use sites treated within the 
species range or the likelihood of a pesticide treatment at a given location within the range. 

Endangered species exposure modeling scenarios for aquatic species in static water habitat are 
represented by water bodies ranging from 1 m2 to 1 ha in area with relatively small watersheds of 
less than 10 ha. Incorporation of usage data to refine these exposure scenarios can be achieved 
following an approach similar to what was described for terrestrial species. The fraction of static 
water habitats impacted by pesticide usage within a species range or critical habitat can be 
quantified directly from the percent of potential usage statistics and probability distributions of 
exposure generated that account for water bodies within the species range where no use or limited 
use occurs.  

Species that inhabit flowing water bodies are potentially impacted by pesticide use occurring over 
large watershed areas. Predicting the potential exposure at the watershed scale requires that the 
likelihood of pesticide usage and/or the fraction of use sites treated across many different potential 
use sites and over broad regions be quantified. The percent of potential pesticide usage data at the 
county and crop group level can be used to assign fractions of pesticide use sites receiving 
applications at maximum label rates. The areas of potential use sites treated within a county can be 
randomly selected to achieve the target faction of use sites treated. The random selection of 
potential use sites treated within a watershed can be realized multiple times to achieve an 
ensemble of potential use scenarios for a given watershed that honors the percent of potential 
usage data covering multiple crop groups. This approach to incorporating usage data into 
parameterization of exposure models at the watershed scale accounts for the probability of use on 
different crop groups and the uncertainty in the specific locations of pesticide use within a 
watershed, resulting in a probability distribution of potential exposure that is constrained by actual 
usage data. 

3.3.3. Formal Weight-of-Evidence Analysis 
Pesticide usage data can be incorporated directly into a formal weight-of-evidence analysis. The 
results of a refined co-occurrence analysis, as described in Section 3.3.1, can provide a quantitative 
measure of the likelihood of pesticide use within a species range or critical habitat. Given data and 
assumptions regarding the distribution of a species across its range, these co-occurrence results 
can also be used to estimate the percentage of individuals affected by pesticide use. A weight-of-
evidence analysis that incorporates usage data may be conducted in place of refined exposure 
modeling for some species, which may result in more efficient use of analysis resources.  
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4. Conclusions 

Pesticide usage by crop group at the county-level can be estimated from best available, publicly 
available nationwide data sources. These data sources include the USGS Annual Pesticide Use 
database (Baker and Stone, 2015), USDA Agricultural Chemical Use Program Survey (USDA, 2019a), 
California Pesticide Use Record (PUR) database (CDPR, 2019), the USDA Cropland Data Layer 
(Boryan et al., 2011; USDA, 2019b), the USDA Census of Agriculture (USDA, 2019c), and the USDA 
National Agricultural Statistics Service Annual Survey (USDA, 2019d). Several methods to generate 
these estimates were developed and evaluated against observed crop group county-level annual 
malathion usage from the PUR database in California. The best performing method considered 
county-level total usage, state-level crop group usage, and potential usage based on CDL crop 
acreage and label use rates. This method (Method 3) resulted in strong agreement with the PUR 
across all counties and crop groups, with an R2 of 0.7978 for county-level estimates and 0.8419 for 
CRD-level estimates. Method 3 was applied nationally using seven years of malathion usage data 
(2010-2016) resulting in probability distributions of annual usage and percent of potential usage. 
The percent of potential usage was based on both CDL and USDA AgCensus and annual survey crop 
group acreages. Incorporating both these two data sources resulted in potential usage estimates 
that accounted for the uncertainty in county-level crop acreage estimates.  

Analysis of multiple years of usage data, multiple sources of data, and multiple estimates from some 
sources (EPest-low and Epest-high from USGS) allowed for the generation of usage statistics which 
were presented as percentiles and tabulated for minimum, 10th, 25th, 50th, 75th, 90th percentiles and 
the maximum. These usage statistics were generated for malathion at the county, CRD, and state-
levels for nine crop groups (alfalfa corn, cotton, orchards and grapes, other crops, pasture and hay, 
rice, vegetables and fruit, and wheat) and are provided as Excel spreadsheets that accompany this 
report. Example maps of county level actual usage and percent of potential usage were provided to 
demonstrate how the data generated can be used to visualize the spatial distribution and 
magnitude of usage. Maps depicting usage associated with the specific locations of crops from CDL 
showed how locations of pesticide usage can be reconciled at the sub-county scale.  

The pesticide usage statistics generated in this study represent probability distributions of usage 
that can be incorporated into multiple phases of an endangered species risk assessment. The more 
conservative 90th percentile or maximum usage rates and percent of potential usage would be 
appropriate at screening-level steps or initial refinements of exposure, while the 50th percentile 
estimates represent the most likely usage scenarios for more refined exposure and ecological 
modeling. Several examples of incorporating usage data into endangered species risk assessments 
were discussed, including refined crop footprint and co-occurrence analysis, refined exposure 
modeling, and weight-of-evidence analysis. Several case studies of endangered species assessments 
where usage data played an important role are also available in the peer reviewed literature 
(Clemow et al., 2018; Whitfield Aslund et al., 2017) as well as case studies of pesticide usage data in 
refined aquatic exposure modeling (Winchell et al., 2018a; Winchell et al., 2018b). These case 
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studies demonstrate the importance of carefully considering quantitative pesticide usage data in 
accurately predicting environmental exposure and deriving risk assessment conclusions.  

The pesticide usage data sources and the estimation and analysis methodologies presented in this 
report represent an unbiased and reproduceable approach to maximizing the utility of publicly 
available pesticide usage data in human health and ecological risk assessments, including 
endangered species assessments. Additional source data, such as proprietary or higher resolution 
state-level data sources, could be incorporated into the generation of usage statistics in conjunction 
with the data sources presented here. While usage data at the spatial and temporal resolution of the 
California PUR database would be ideal to have in all US states and internationally, this report has 
demonstrated that we are still able to garner a tremendous amount of valuable information on the 
spatial distribution and magnitude of pesticide usage nationwide with the currently available 
datasets. Thoughtful application of this data will enable more defensible and scientifically accurate 
assessments of the risks of pesticide use to humans and the environment. 
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Appendix A 

Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate (lbs 

ai/ac) 

alfalfa Alfalfa 36 alfalfa 7.50 

apricots Apricots 223 orchards and grapes 3 

asparagus Asparagus 207 vegetables and fruits 2.5 

avocado Other Tree Crops 71 orchards and grapes 9.4 

barley Barley 21 other crops 2.5 

barley Dbl Crop Barley/Corn 237 other crops 2.5 

barley Dbl Crop Barley/Sorghum 235 other crops 2.5 

barley Dbl Crop Barley/Soybeans 254 other crops 2.5 

beans (dry; snap; lima) Dry Beans 42 vegetables and fruits 1.22 

beets, garden Misc Vegs & Fruits 47 vegetables and fruits 3.75 

blueberry Blueberries 242 vegetables and fruits 3.75 

broccoli ; chinese broccoli ; broccoli rabb Broccoli 214 vegetables and fruits 2.5 

brussels sprouts Misc Vegs & Fruits 47 vegetables and fruits 2.5 

cabbage ; chines cabbage Cabbage 243 vegetables and fruits 7.5 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate (lbs 

ai/ac) 

caneberries (blackberry; boysenberry; 
dewberry; gooseberry; loganberry; 
raspberry) Caneberries 55 vegetables and fruits 6 

cantaloupe Cantaloupes 209 vegetables and fruits 2 

carrots Carrots 206 vegetables and fruits 2.5 

cauliflower Cauliflower 244 vegetables and fruits 2.5 

celery Celery 245 vegetables and fruits 3 

chayote fruit Misc Vegs & Fruits 47 vegetables and fruits 3.5 

chayote root Misc Vegs & Fruits 47 vegetables and fruits 3.12 

cheeries (sweet and tart) Cherries 66 orchards and grapes 7 

chestnut Other Tree Crops 71 orchards and grapes 7.5 

citrus fruits (grapefruit; lemon; lime; 
orange; tangerine; tangelo) Citrus 72 orchards and grapes 4.5 

citrus fruits (grapefruit; lemon; lime; 
orange; tangerine; tangelo) Oranges 212 orchards and grapes 4.5 

citrus fruits (grapefruit; lemon; lime; 
orange; tangerine; tangelo) Citrus 72 orchards and grapes 7.5 

citrus fruits (grapefruit; lemon; lime; 
orange; tangerine; tangelo) Oranges 212 orchards and grapes 7.5 

clover Clover/Wildflowers 58 other crops 7.5 

collards Greens 219 vegetables and fruits 3 

corn (field) Corn 1 corn 2 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate (lbs 

ai/ac) 

corn (field) Dbl Crop Corn/Soybeans 241 corn 2 

corn (field) Pop or orn corn 13 vegetables and fruits 2 

corn (sweet) Sweet corn 12 vegetables and fruits 2 

cotton Cotton 2 cotton 7.5 

cotton Dbl Crop Soybeans/Cotton 239 cotton 7.5 

cucumber Cucumbers 50 vegetables and fruits 3.5 

currant Caneberries 55 vegetables and fruits 3.75 

dandelion Other Crops 44 other crops 2.5 

eggplant Eggplants 248 vegetables and fruits 6.24 

endive (escarole) Misc Vegs & Fruits 47 vegetables and fruits 2.5 

figs Other Tree Crops 71 orchards and grapes 4 

garlic Garlic 208 vegetables and fruits 4.68 

grapes (raisin, table, wine) Grapes 69 orchards and grapes 3.76 

grass, forage, hay (Bermuda, barnyard 
grass, canary grass, yellow foxtail) fescue, 
orchardgrass, red top, timothy, Other Hay/Non Alfalfa 37 pasture and hay 3.75 

grass, forage, hay (Bermuda, barnyard 
grass, canary grass, yellow foxtail) fescue, 
orchardgrass, red top, timothy, Other Hay/Non Alfalfa 37 pasture and hay 3.75 

guava Other Tree Crops 71 orchards and grapes 16.25 

hops Hops 56 other crops 1.89 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate (lbs 

ai/ac) 

horseradish Misc Vegs & Fruits 47 vegetables and fruits 3.75 

kale Greens 219 vegetables and fruits 3 

kohlrabi Misc Vegs & Fruits 47 vegetables and fruits 2.5 

leek Misc Vegs & Fruits 47 vegetables and fruits 3.12 

lespedeza Other Hay/Non Alfalfa 37 pasture and hay 7.5 

lettuce (head & leaf) Lettuce 227 vegetables and fruits 3.76 

lettuce (head & leaf) Dbl Crop Lettuce/Barley 233 vegetables and fruits 3.76 

lettuce (head & leaf) Dbl Crop Lettuce/Cantaloupe 231 vegetables and fruits 3.76 

lettuce (head & leaf) Dbl Crop Lettuce/Cotton 232 vegetables and fruits 3.76 

lettuce (head & leaf) Dbl Crop Lettuce/Durum Wht 230 vegetables and fruits 3.76 

macadamia nut Other Tree Crops 71 orchards and grapes 5.64 

mango Other Tree Crops 71 orchards and grapes 9.4 

melons (other than watermelon) Misc Vegs & Fruits 47 vegetables and fruits 2 

mint Mint 14 vegetables and fruits 2.82 

mustards (mustard greens; mustard 
spinach; chinese mustard mizuna) Mustard 35 vegetables and fruits 3 

nectarines Nectarines 218 orchards and grapes 9 

oats Oats 28 other crops 2 

oats Dbl Crop Oats/Corn 226 other crops 2 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate (lbs 

ai/ac) 

oats Dbl Crop Soybeans/Oats 240 other crops 2 

okra Misc Vegs & Fruits 47 vegetables and fruits 6 

onion Onions 49 vegetables and fruits 3.12 

papaya Other Tree Crops 71 orchards and grapes 10 

parsley Greens 219 vegetables and fruits 3 

parsnip Misc Vegs & Fruits 47 vegetables and fruits 3.75 

passion fruit Misc Vegs & Fruits 47 vegetables and fruits 8 

pasture and rangeland Other Hay/Non Alfalfa 37 pasture and hay 2.76 

peaches Peaches 67 orchards and grapes 9 

pears Pears 77 orchards and grapes 2.5 

peas Peas 53 vegetables and fruits 2 

pecans Pecans 74 orchards and grapes 5 

peppers Peppers 216 vegetables and fruits 3.12 

pineapple Misc Vegs & Fruits 47 vegetables and fruits 6 

potatoes Potatoes 43 vegetables and fruits 3.12 

pumpkins Pumpkins 229 vegetables and fruits 2 

radish Radishes 246 vegetables and fruits 3 

rice (and wild rice) Rice 3 rice 2.5 

rutabagas Misc Vegs & Fruits 47 vegetables and fruits 3 

rye Rye 27 other crops 3 



 

CropLife America / May 25, 2020 / National Pesticide Usage Analysis / ©2020 Stone Environmental. All rights reserved 
 

54 

Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate (lbs 

ai/ac) 

salsify Misc Vegs & Fruits 47 vegetables and fruits 3.75 

shallot Misc Vegs & Fruits 47 vegetables and fruits 3.12 

sorghum Sorghum 4 other crops 2 

spinach Greens 219 vegetables and fruits 2 

squash, summer Squash 222 vegetables and fruits 5.25 

squash, winter Squash 222 vegetables and fruits 3 

strawberry Strawberries 221 vegetables and fruits 8 

sweet potatoes Sweet Potatoes 46 vegetables and fruits 3.12 

swiss chard Greens 219 vegetables and fruits 2 

tomatoes (and tomatillos) Tomatoes 54 vegetables and fruits 6.24 

trefoil (birdsfoot) Other Hay/Non Alfalfa 37 pasture and hay 7.5 

turnips Turnips 247 vegetables and fruits 3.75 

vetch Vetch 224 pasture and hay 7.5 

walnuts Walnuts 76 orchards and grapes 7.5 

watercress Greens 219 vegetables and fruits 6.25 

watermelons Watermelons 48 vegetables and fruits 2 

wheat (spring and winter) Dbl Crop Durum Wht/Sorghum 234 wheat 2 

wheat (spring and winter) Dbl Crop WinWht/Corn 225 wheat 2 

wheat (spring and winter) Dbl Crop WinWht/Cotton 238 wheat 2 
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Table A- 1 CDL class name, USGS crop group and potential use rate assigned to the crops use pattern listed in the malathion product label 

Malathion Label Crop CDL Class Name 
CDL Class 

Code USGS Crop Group 
Potential Use Rate (lbs 

ai/ac) 

wheat (spring and winter) Dbl Crop WinWht/Sorghum 236 wheat 2 

wheat (spring and winter) Dbl Crop WinWht/Soybeans 26 wheat 2 

wheat (spring and winter) Durum Wheat 22 wheat 2 

wheat (spring and winter) Spring Wheat 23 wheat 2 

wheat (spring and winter) Winter Wheat 24 wheat 2 

yams Misc Vegs & Fruits 47 vegetables and fruits 3.12 
 



1 

Attachment II  EPA-HQ-OPP-2020-0090 

 

 Endangered Species Risk Assessment - Synopsis 

 
 

This synopsis describes an aquatic endangered species risk assessment (ESRA) case study for malathion 
using 100 listed freshwater fish and aquatic invertebrate species as the starting point. The complete aquatic 
ESRA was prepared for FMC Corp. by Intrinsik Corp. and Stone Environmental Inc. and is comprised of three 
volumes1 and 727 pages. 

This case study demonstrates the necessity of developing spatially explicit and species-specific risk estimates 
based upon best available environmental and agronomic data, for use in the endangered species risk 
assessment process. Each listed species (including distinct species populations (DSP) and evolutionarily 
significant units (ESU)) and their designated critical habitats will have unique risk probabilities based on 
potential differences in exposure and effect. Numerous lines of evidence are applied to support this conclusion. 
To address potential risks to listed species, the Services often develop reasonable and prudent alternatives 
(RPAs) that may include generic spray drift buffers. However, generic spray drift buffers applied across 
agricultural landscapes without consideration of factors affecting specific species are arbitrary, scientifically 
unsupportable, and economically destructive (e.g., unnecessarily removing farm land from production). 

This case study provides the basis to develop a standard operating procedure for this process, thereby 
making ESRAs more efficient and less resource intensive. Specific listed fish and aquatic invertebrate species 
are identified that may benefit from risk evaluation at the population-level or from some form of mitigation 
(e.g., registrant-initiated conservation mitigation) and/or potential label adjustments thereby focusing 
resources to protect listed species from pesticide exposure where they may be needed. 

The ESRA is based largely on the CropLife America (CLA) Framework2. The framework describes a hierarchical 
approach to developing an ESRA and is based on the guidance provided by EPA3 and the NRC National 
Academy of Sciences panel report4. Each component of the case study is briefly described in the sections that 
follow. 

  

1 Teed, R.S., M. Winchell, L. Padilla, H. Rathjens, S. Castro-Tanzi, and R. Breton. 2019a. Refined aquatic endangered species risk 
assessment for malathion – ESRA - Volume 1. Prepared for FMC Corporation, Washington D.C. pp 133 

… 2019b. Refined aquatic endangered species risk assessment for malathion – Exposure and Effects Appendix - Volume 2. Prepared for 
FMC Corporation, Washington D.C. pp 272 

… 2019c. Refined Aquatic Endangered Species Risk Assessment for Malathion – Results Appendix - Volume 3. Prepared for FMC 
Corporation, Washington D.C. pp 322 

2 CLA (CropLife America). 2017. Endangered Species Risk Assessment Framework and Problem Formulation. CropLife America – 
Ecological Risk Assessment Committee (ERAC). Washington D.C. August 2017. 

3 EPA (US Environmental Protection Agency). 2004. Overview of the Ecological Risk Assessment Process in the Office of Pesticide 
Programs. Washington, DC. January 23, 2004 [online]. Available: http://www.epa.gov/espp/consultation/ecorisk-overview.pdf 

EPA. 1992. Framework for Ecological Risk Assessment. EPA/630/R-92/001. February 1992. 
EPA. 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F. April 1998. 

4 NRC (National Research Council). 2013. Assessing Risks to Endangered and Threatened Species from Pesticides. Committee on 
Ecological Risk Assessment under FIFRA and ESA Board on Environmental Studies and Toxicology, Division of Earth and Life 
Studies, National Research Council. National Academies Press, Washington D.C. 

http://www.epa.gov/espp/consultation/ecorisk-overview.pdf
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Exposure  
 

The aquatic exposure modeling approach was designed to move beyond the screening level by refining the 
landscape characteristics and malathion use characteristics relevant to specific endangered species habitat 
ranges. The ESRA focused on refinement of model inputs and assumptions that are known to be influential in 
aquatic exposure prediction for malathion. The goal of this exposure assessment was to demonstrate across a 
broad range of species habitat ranges, geographic regions, and water body types how the use of refined 
modeling approaches and data inputs can lead to significantly more realistic exposure results and conclusions 
than a simple screening level analysis. 

Exposure modeling was conducted with the US 
Environmental Protection Agency’s (US EPA) current 
regulatory exposure models, including the Pesticide in Water 
Calculator (PWC), the Pesticides in Flooded Agriculture Model 
(PFAM), and the agricultural dispersion (AGDISP) and 
Agricultural drift (AgDRIFT) spray drift models. Exposure 
modeling for this assessment included a broad range of 
refinements designed to incorporate additional data that 
explicitly described landscape, climate, hydrologic, and 
agronomic conditions affecting aquatic habitats within each 
listed species range. The refinements represent a subset of 
possible refinements that are understood to have a 

Aquatic habitat found in an agricultural 
landscape 

meaningful impact on potential exposure and that are supported by readily available data. Examples of these 
refinements include those with broad impact (e.g., spatial resolution, landscape) and more specific refinements 
(e.g., weather, soils, and crop groups). Historical malathion usage data was used to develop the application 
probability for each use pattern throughout each species range. Thus, the predicted malathion applications 
within any species range were dependent on the use patterns found in the catchments that overlap the species 
range. Use data were applied to better reflect how malathion is realistically used given that annual applications 
at the full label rates per acre would significantly exceed the amount of malathion imported into the US each 
year. 

In real world agricultural landscapes, watersheds for both static and flowing water bodies can contain 
combinations of multiple crops potentially receiving malathion applications. Therefore, multiple crops were 
modeled as concurrently impacting potential waterbody exposure based on actual crop area patterns from 
historical cropping data. Listed species distributed across the entire country were selected for modeling. Of 
course, not only do the individual listed species have unique habitat requirements, but across the national 
landscape there are a massive number of waterbodies that vary in myriad different ways (e.g. underlying 
geology, size, shape, depth). To simplify, surrogate habitats were used, as defined by the EPA, FWS, and NMFS5 

(Table 1) and the 100 listed aquatic species were assigned to these habitats (or multiple habitats) depending 
upon available information on their life history. 

 
 
 

5 Agencies (EPA, NMFS, FWS, USDA). 2013. Interim approaches for National-level pesticide endangered species act assessments based 
on the recommendations of the National Academy of Sciences April 2013 report. 
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Table 1 Description of surrogate freshwater habitats and habitat characteristics 

Bin 
Number 

Habitat Description 
(Depth (m), Width (m), 

Length (m), Flow rate (m3/s)) 

 
Habitat Characteristics 

 
2 Low Flow 

(0.1, 2, variable, 0.001) 

Where current is barely discernable in a low volume body of water 
(trickling spring, still pool within a stream, shallow areas at stream 

edges) 

3 Moderate Flow 
(1, 8, variable, 1) 

Intermediate current in a small to moderate-volume body of water 
(stream, creek, low flow areas during flooding) 

4 High Flow 
(2, 40, variable, 100) 

Fast current in a moderate to large volume body of water (river, rapids 
area of a creek, moderate flow areas subject to flooding) 

 
5 Low Volume 

(0.1, 1, 1, NA) 

Very small body of water – usually ephemeral, or the shallow edges of 
a moderate volume or high-volume body of water (puddle, edge of a 

pond) 

6 Moderate Volume 
(1, 10, 10, NA) Intermediate-sized body of water (pond, wetland, vernal pool) 

7 High Volume 
(2, 100, 100, NA) 

Large body of water (lake, extensive wetland, vernal pool covering 
many acres) 

The variability in predicted environmental exposure concentrations (EECs) was a function of the type and 
size of the water body and to a large extent the landscape characteristics impacting those water bodies. 
Overall, EEC variability and the trends between habitat types within a given species range followed conceptual 
expectations. Exposure is generally highest for the small static water habitat and low flow habitat. The small 
static water habitats are more vulnerable to pesticide exposure due to their small size and relatively low 
volume, making them susceptible to drift-based exposure. The low flow habitats are more vulnerable to 
pesticide exposure due to shallow depth and narrow width leading to higher potential for drift exposure. The 
small watersheds associated with low flow habitats are also more likely to be heavily cropped and can receive a 
higher percentage of pesticide treatment. 

Exposure for the moderate and high flow habitats are lower than the other types of habitat, with high flow 
habitat often close to a factor of 10x lower than the moderate flow habitat. These habitat types have lower 
exposure because watersheds draining to this size of flowing water bodies are much more likely to have a large 
proportion of non-cropped areas and areas that do not receive malathion use. The higher rates of flow in these 
types of habitat also act to dilute and transport residues downstream. 
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Threatened and endangered 
species are identical to all 
other species in terms of 

their toxicological sensitivity 
or tolerance to 

environmental stressors such 
as pesticides. 

Just because they are listed 
does not mean they are 

toxicologically more sensitive 
to a chemical. 

Effects 
 

The Office of Chemistry Safety and Pollution Prevention6 has derived standard test guidelines that meet 
the toxicity testing requirements for aquatic and terrestrial biota under the Federal Insecticide, Fungicide, and 
Rodenticide Act (FIFRA; registration of pesticides), the Toxic Substances 
Control Act (TSCA; regulation of industrial chemicals) and the Federal 
Food, Drug and Cosmetic Act (FFDCA; setting tolerances or tolerance 
exemptions for pesticide residues). For example, toxicity testing for birds 
is generally performed for a waterfowl (e.g., mallard duck), passerine (e.g., 
canary, zebra finch) and upland game bird (e.g., northern bobwhite) 
species. For mammals, the generic laboratory rat is typically evaluated, 
while both a cold water (e.g., rainbow trout) and warm water (e.g., 
bluegill) species is selected for fish3. Wild-caught organisms are often not 
preferred for standard toxicity testing because of extraneous variables 
that are difficult to control (e.g., region and waterbody-specific 
adaptations). Well-studied chemicals with a long regulatory history, such 
as malathion, have a broad array of species for which toxicity testing has 
been conducted. However, studies that do not follow standard testing 
guidelines require extensive review for relevance and quality. Study evaluation criteria were developed and 
applied for all malathion toxicology studies7 only those studies that have undergone the complete data quality 
review and meet the evaluation criteria are used in the refined malathion assessment. 

The toxicological sensitivity of most listed species to malathion is generally unknown. Therefore, 
methods must be used to predict what the sensitivity of each listed species may be. Given the species being 
evaluated is either endangered or threatened, the methods chosen to estimate sensitivity must be considered 
conservative while also capturing associated uncertainties. In this assessment two methods are used to predict 
the sensitivity of the 100 listed aquatic species examined: 

1. Surrogacy 
2. Species Sensitivity Distributions (SSD) 

Surrogate species are used in risk assessments due to the restrictions on testing rare or imperiled 
species. Generally, the data generated for standard test organisms, using standard test guidelines and 
laboratory-reared study organisms form the basis for the selection of surrogates. However, care must be taken 

 
 
 
 
 
 

6 OCSPP (Office of Chemistry Safety and Pollution Prevention). 2016. OCSPP Harmonized Test Guidelines. US Environmental Protection 
Agency, Washington, DC. https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-850-ecological-effects-test- 
guidelines. 
7 Breton, R., G. Manning, Y. Kara, S. Rodney and K. Wooding. 2014a. Cheminova’s Ecotoxicological Study Evaluation Criteria, Study 
Evaluations and Proposed Screening-level Effects Metrics for the Registration Review of Malathion. Unpublished report prepared by 
Intrinsik Environmental Sciences, Inc., Ottawa, ON, Project No. 60320, for Cheminova, Inc., Arlington, VA. Final report dated March 4, 
2014. [MRID 49333901]. 

https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-850-ecological-effects-test-guidelines
https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-850-ecological-effects-test-guidelines
https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-850-ecological-effects-test-guidelines
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to select appropriate surrogate species. When no additional knowledge 
is available, a general surrogate may be selected as a representative of 
similar species. For example, selecting the most sensitive fish species as 
being representative of all fish. This is typically done in a screening- 
level assessment and is a simple method to quickly, but with great 
uncertainty, establish whether there is a potential for harm. In a refined 
assessment, the selection of an appropriate surrogate is critical to 
establishing the probability of risk. 

In this refined malathion assessment, surrogates are based on 
taxonomy, habitat, and/or life history features. Species may also be 
grouped based on a variety of commonalities, including taxonomy 
(genus, family, class, or order), habitats (e.g., vernal pool amphibians), 
shared threats (e.g., competition with invasive species), similar life- 
history (e.g., mollusks), body size, and others. Laboratory and listed 
species that had a common taxonomic family were considered 
surrogates for toxicological purposes. For example, a laboratory study 
for the Louisiana crayfish (Procambarus clarkia) (Taxonomic Family: 
Cambriadae) was considered an appropriate toxicological surrogate for 
the Nashville crayfish (Orconectes shoupi) (Taxonomic Family: 
Cambriadae). Both species also share commonalities based on habitat 
and life history features. Once a toxicological surrogate has been selected, a concentration-response 
distribution is developed to show the full range of response to malathion exposure. Where data do not allow 
for the full concentration-response distribution, a predicted no observed (NOEC) or lowest observed effect 
concentration (LOEC) may be used to predict sensitivity. 

As previously mentioned, listed and non-listed species exist on the same full distribution of 
toxicological sensitivities (very sensitive to very tolerant). When toxicological data for an appropriate surrogate 
is not readily available, a species sensitivity distribution (SSD) can be used to predict sensitivity. An SSD takes 
advantage of all the available toxicological data for an appropriate sensitive endpoint (e.g., mortality, growth or 
reproduction) to create a full sensitivity distribution (very sensitive to very tolerant) (Figure 1). 

Risk is a measure of the 
probability of harm from a 
potential hazard (in this 

case a pesticide) and thus 
cannot be predicted from a 
simple comparison of max 
exposure / most sensitive 

effect. This simple screening 
approach only determines 
whether the hazard has the 

potential to cause harm. 

Without evaluating species- 
specific exposure and effects 

data, there is no way to 
determine the probability of 

harm (risk) to individual 
listed species. 
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Figure 1. Species sensitivity distribution for aquatic invertebrate species exposed to malathion 

The following figures (Figure 2 a,b,c,d) illustrate the pathway for measuring the potential for adverse effects in 
the refined risk assessment. For acute exposure in both flowing and static water and for those listed species 
with an appropriate surrogate, the concentration-response curve for that surrogate was used. If no surrogate 
was available, then the hazard quotient affecting the 5th percentile species in the SSD was used as a sensitive 
measure of potential effect (Figure 2a). For chronic exposure, the HC10 from the SSD was applied for species 
with no surrogate and a concentration-response curve for species with a surrogate (Figure 2b). For chronic 
exposure to fish, insufficient toxicological data were available to develop the SSD. Therefore, a NOEL for a 
sensitive fish species was used (Figure 2c,d). 
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A. 

 

B. 

 

C. 
 

 

 
D. 

 

 
 
 

Figure 2abcd. Risk characterization pathways for acute and chronic effects to listed fish and 
aquatic invertebrate species 
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Risk Characterization  
 

The risk characterization was supported by multiple lines of evidence including the modeling results, 
monitoring data, mesocosm and field studies, and incident reports. These multiple lines of evidence were 
integrated to provide appropriate context to the ESRA conclusions. 

Given the availability of exposure and effects distributions, where 
possible, the risk characterization was conducted using risk or joint 
probability curves and risk criteria were used to evaluate these risk 
curves. This is in keeping with the recommendations of the NRC 
National Academy of Sciences panel report4 to implement a 
probabilistic approach in refined assessments and capture the 
uncertainty associated with risk estimates. In some cases (e.g., 
chronic fish) the probability of exceeding a sensitive NOEL was 
calculated. 

Generic risk categories have been developed for most receptor groups. The approach involves determining 
the area under each risk curve (AUC) and comparing that value to criteria that specify de minimis, low, 
intermediate, or high risk. The criteria8 are listed below: 

 
• If the AUC is less than the AUC associated with the curve produced by risk products (risk product = 

exceedance probability x magnitude of effect) of 0.25% (e.g., 5% exceedance probability of 5% or 
greater effect = 0.25%), then the risk is categorized as de minimis. The AUC for risk products of 0.25% 
is 1.75%; 

• If the AUC is equal to or greater than 1.75%, but less than 9.82% (i.e., the AUC for risk products of 2%), 
then the risk is categorized as low; 

• If the AUC is equal to or greater than 9.82%, but less than 33% (i.e., the AUC for risk products of 10%), 
then the risk is categorized as intermediate; and, 

• If the AUC is equal to or greater than 33%, then the risk is categorized as high. 
 

Overall, the modeling results indicate that malathion is unlikely to adversely affect listed fish species. In 
most of the species ranges evaluated, acute risk was either negligible or de minimis (a less than 5% probability 
of exceeding a 5% adverse effect). Chronic risk was found to be negligible when malathion use was very low 
within a species range. This result was due to the difficulty in sustaining malathion concentrations in aquatic 
systems and the fact that modeled 21-day exposure concentrations were consistently lower than the most 
sensitive effect metric (i.e., NOEL). For listed aquatic invertebrates, risk was predicted to be higher for some 

 
 

8 It is normally the role of the regulatory agency to provide appropriate risk criteria to use in a risk assessment. However, in this case, the agencies have 
not yet provided risk criteria to interpret probabilistic risk curves within the context of an ESRA, despite the NAS panel report4 recommendations to use 
probabilistic methods. The risk criteria described above were originally developed on behalf of the EPA for use in a contaminated site program (CERCLA) 
project and are applied here to assist the reader in interpreting the risk curves. The EPA reference is provided here: 

 
EPA (United States Environmental Protection Agency). 2004. Ecological Risk Assessment for General Electric (GE)/Housatonic River Site, Rest of River. New 

England Region, Boston, MA. DCN: GE-100504-ACJS. 

A risk characterization is the 
interpretation of the combined 

product of the effects and 
exposure analyses with 

consideration of all associated 
assumptions and uncertainties 
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listed invertebrate species, but within a limited portion of their range. Risk was predictable, based on proximity 
from the use pattern, weighted application rates, and spray drift contribution to the aquatic habitat. For many 
listed species, there was no, or very little exposure predicted within a species range even though at the coarse 
county-level there was assumed to be overlap between a species range and crop use pattern (Figure 3). 

 

There are several lines of 
evidence that were used in a 
qualitative manner in the ESRA 
to provide context to the risk 
characterization and 
conclusions. These include 
aquatic field studies, mesocosm 
studies, effects of macrophytes 
on aquatic toxicity, water 
quality monitoring data, and 
incident reports. 

The aquatic field studies 
found no persistent effects of 
malathion on the abundance or 
survival of fish or aquatic 
invertebrate communities. 
Eleven mesocosm studies are 
available that studied the effects 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Number of moderate volume habitats (Bin 6) predicted 
to exceed the listed freshwater invertebrates EC10 for the 5th 
percentile species on the SSD within each listed species range 

of malathion on aquatic communities. The studies attempted to quantify effects to fish, aquatic-phase 
amphibians, periphyton, phytoplankton, macrophytes, zooplankton and macro arthropods. 

The mesocosm studies identified cladoceran species as being sensitive to malathion, while other aquatic 
invertebrate taxa (e.g., copepods, rotifers, snails, amphipods, isopods, and insects) were considerably less 
sensitive. This is consistent with the modeling line of evidence. Where surrogates were used, all the surrogate 
species identified were tolerant of malathion. 

Natural aquatic systems are complex, and wildlife do not live in the inert environments used in standard 
toxicity tests. Factors such as variable pH and temperature, presence of organic matter and shading of water 
bodies, can influence the degree to which organisms are exposed to and affected by pesticides. An 
examination of the impact of aquatic plants in test systems on malathion toxicity demonstrated that the plants 
were a mitigating factor for cladoceran sensitivity. As such, the resulting effects metrics from toxicity tests may 
not be representative of all aquatic environments. This is particularly important given the nature of a 
nationwide endangered species risk assessment and examining potential risk to individual species and their 
critical habitat. At a minimum, the characteristics of the environment where their habitat is found should be 
accounted for to the extent possible and highlights one reason the use of a generic screening-level assessment 
is considered overly conservative for many species. 

The surface water monitoring data provides a strong line of evidence for the aquatic ecological risk 
assessment. A variety of data sources were available from across the US with a focus on regions with heavy 
agricultural use with samples collected over several years. A significant number of samples have been collected 



10 

Attachment II  EPA-HQ-OPP-2020-0090 

 

over time (10’s of thousands from 2001-2017) and sampling was also targeted for the timing of pesticide 
application and provided a reasonable estimate of peak concentrations. Overall, there was a low frequency of 
detection for malathion in surface water samples1. The surface water monitoring results for malathion support 
the findings of the ESRA. Comparisons of surface water monitoring data directly with sensitive effects metrics 
indicate that fish and aquatic invertebrates would rarely have the potential to be harmed by detected 
malathion levels in the environment. Furthermore, these malathion concentrations are comparable to those 
predicted by refined exposure modeling, indicating that the modeling conducted for the refined risk 
assessment is sufficiently realistic and conservative. 

The incident data suggests that incidents resulting from the legal, registered uses of malathion are 
infrequent, particularly given the widespread use of malathion over the 37-year reporting period. Most of the 
reported incidents resulted from misuse of malathion or had insufficient information provided to determine 
whether malathion was the cause of the observed effects. Few incidents have occurred since 2000 and all 
aquatic incidents occurred prior to the last re-registration of malathion, which involved amendments to labeled 
use patterns, thereby reducing exposure. It is recognized that the incident reports are a weak line of evidence 
as very few, if any, incidents involving aquatic invertebrates would be reported. However, the lack of recent 
incidents involving fish kills suggests that the current malathion labels are protective of freshwater fish. 

 

Conclusions  
 

Each individual listed species and the critical habitat on which they depend, will have a different 
probability of exposure and effect, and therefore probability of risk. For malathion, there are many lines of 
evidence that support this conclusion. All the exposure modeling results conducted in this assessment were 
species-specific, where local weather conditions, soil types found within species ranges, and habitat presence 
and type (flowing or static, volume, flow rate, etc.) are known. This inherently modifies the outcomes of the 
exposure modeling for each of the listed species and their critical habitat. The listed species are not necessarily 
as sensitive as the most sensitive species identified in the fish or aquatic invertebrate datasets. Where surrogate 
data are available, in many cases the listed species is predicted to be more tolerant of malathion than the most 
sensitive species. The result of this refined aquatic ESRA is a risk determination for each of the aquatic listed 
species evaluated, in their assigned habitats, along with the uncertainty information that influences the risk 
statement. A risk manager can use this ESRA to evaluate the need for further population modeling to 
determine the potential for impacts at the population-level and/or the appropriateness of proposed 
mitigations (e.g. RPAs) on a species-specific basis. 

The ESRA reports1 serve as a valuable case study demonstrating the importance of developing both 
spatially explicit and species-specific exposure estimates and evaluating the appropriateness of the effects 
thresholds selected when deriving risk estimates for listed species. Exposure estimates should be based upon 
the best available environmental and agronomic data. Effects thresholds should be based on high quality data 
that are appropriate for each individual listed species. The ESRA can also be used as the basis for developing a 
standard operating procedure for this process, thereby making it more efficient and less resource intensive in 
future ESA risk assessments. In addition, specific listed fish and aquatic invertebrate species can be identified 
that may benefit from other forms of mitigation (e.g., registrant-initiated conservation mitigation) and/or 
adjustments to integrated pest management (IPM) activities due to a quantitative risk determination within 
part of their range. 
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West Indian Manatee 
Case Study 

 

EPA (2020) applied limited quantitative and qualitative evidence to develop an effect 

determination for the West Indian manatee (Draft carbaryl BE, Appendix 4-8). The conclusion of 

may affect, likely to adversely affect (MA/LAA) is primarily based on a qualitative evaluation of 

the manatee’s potential exposure to drinking water containing carbaryl at overestimated 

concentrations. EPA calculated that for a surrogate manatee aquatic habitat (Bin 3 – moderate 

flow water body), the water concentration could reach a daily maximum concentration of 625 µg 

ai/L. EPA also assumed that the most sensitive effect metrics for mammals (i.e., LD50 = 104.3 

mg ai/kg bw; LOAEL = 30 mg ai/kg bw/day; NOAEL = 4 mg ai/kg bw/day) based on decreases 

in fetal body weight and maternal body weight for the rat) are representative of the sensitivity of 

the manatee. Finally, to evaluate the potential for adverse effects to the aquatic plants on which 

the manatee depends, the predicted freshwater concentration (625 µg ai/L) was compared to the 

most sensitive adverse effects metric for non-vascular plants (IC50 = 340 µg ai/L). EPA reported 

that vascular plants (e.g., aquatic grasses) are tolerant of carbaryl exposure, given an IC50 of 

23,900 µg ai/L for frond abundance in Lemna gibba (Draft carbaryl BE Appendix 4-8).  

The West Indian manatee must have fresh drinking water periodically as their typical diet of sea 

grass found in salt and brackish waters does not contain sufficient water to maintain the 

manatee’s daily requirements. However, drinking water is not the only source of exposure, as 

there can also be dietary exposure through consumption of aquatic plants.  

This case study quantitatively evaluates risk to the West Indian manatee from potential exposure 

to carbaryl, incorporating both drinking water and dietary routes of exposure. A modified 

screening-level model accounts for dietary and drinking water exposure, using allometric 

equations.  The case study analyses are described below. 

Model Description 

Rather than relying on a generic allometric model to estimate species-specific food intake rate 

and water flux rate (e.g., all birds or all mammals allometric models), such as in T-REX, two 

major refinements can be made. First, instead of estimating food-ingestion rate using an 
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allometric equation, free metabolic rate was estimated. The latter, in combination with 

metabolizable energy of each dietary item, determines a food ingestion rate specific to the actual 

manatee diet. Second, we have updated the allometric model for free metabolic rate to account 

for data published since the Wildlife Factors Exposure Handbook was released in 1993 (the 

handbook upon which EPA relies for its wildlife allometric models). Food intake rate was 

derived using the following equation: 

𝐹𝐹𝐹𝐹𝐹𝐹 =  
𝐹𝐹𝐹𝐹𝐹𝐹

∑ 𝐴𝐴𝐴𝐴𝑖𝑖 −  𝐺𝐺𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖=1

 

where, 

 FMR  = normalized free metabolic rate (kcal/kg bw/d); 

 AEi = assimilation efficiency of ith food item (unitless); and 

 GEi = gross energy of ith food item (kcal/kg ww). 

The allometric relationships typically used for FMR from Nagy et al. (1999) are outdated. 

Numerous recent studies provide additional data to update FMR equations for different wildlife 

receptor groups. To update the allometric equations, data from Nagy et al. (1999) and Anderson 

and Jetz (2005) were obtained and analyzed.  

The manatee model has a daily time step to incorporate degradation of carbaryl residues in water 

over time and allow for the calculation of a rolling average chronic exposure to match the 

exposure period of the chronic endpoint being evaluated. As per EPA’s revised guidance (EPA, 

2020a), the acute-effects metrics are adjusted for the estimated population size (in this case 

10,000 manatees) of each listed wildlife species. The adjusted effect metric is developed by 

estimating the exposure level that would cause mortality to one individual in the listed species 

population, assuming an underlying log-probit model. There are no toxicological data for the 

manatee. We normally select an effects metric from the closest available taxonomic surrogate at 

the order level. In this case, there are no toxicity data available for species in the order Sirena to 

which the West Indian manatee belongs. Therefore, the most sensitive effects metrics for all 

mammals were used (i.e., LD50 = 104.3 mg ai/kg bw; LOAEL = 30 mg ai/kg bw/day based on 

decreases in fetal body weight and maternal body weight for the rat). 
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Indirect Effects 

To estimate exposure for aquatic macrophytes, the dominant dietary item of the West Indian 

manatee, we relied on EPA’s estimated peak daily Bin 3 concentration of 625 µg ai/L (0.625 mg 

ai/L). This value was used to estimate concentrations in aquatic plant using a regression-based 

equation from Arnot and Gobas (2006), and compared to the acute effects metric for aquatic 

macrophytes (IC50 = 23.9 mg ai/L), divided by the standard application factor for general 

dependencies, i.e., AF=1 for aquatic plants (EPA, 2020a).  

Risk Characterization 

Risk quotients (RQs) were calculated for: (1) direct effects to adult males and females for acute 

and chronic exposure durations, and (2) acute effects to aquatic plants. Maximum daily exposure 

estimates for the combined dietary and drinking water exposure routes were used to calculate 

acute direct RQs and maximum running average exposure estimates are used to calculate chronic 

direct RQs.  

Model Inputs 

Table 1 summarizes the inputs used to parameterize the model. When available, values 

recommended by EPA in the draft carbaryl BE were used.  

Table 1. Input parameters for West Indian manatee exposure and effects model 
Model Input Value Reference 
Body weight 453.6 kg FWS, 2020, 1000 lb assumed correct 

https://ecos.fws.gov/ecp0/profile/speciesProfile?sId=4469 
Peak daily Bin 3 water 

concentration 0.625 mg ai/L  EPA, 2020 

Aquatic half-life 1.8 d EPA, 2012; aqueous photolysis 
Acute effects metric LD50 = 104.3 mg ai/kg bw Rat mortality (EPA, 2020)  

Chronic effects metric NOAEL = 4 mg ai/kg bw/day Decreases in fetal body weight and maternal body weight for 
the rat (EPA, 2020) 

Effects metric for aquatic 
plants IC50 = 23.9 mg ai/L Reduced frond abundance in Lemna gibba. This study was 

conducted under 96-hour renewal conditions. (EPA, 2020) 
Gross energy  667 kcal/kg ww Aquatic vegetation data from Crocker et al., 2002 

Moisture content 81.4%  
Assimilation efficiency 0.31 Average of aquatic and emergent vegetation; EPA, 1993 

Log Kow 2.36 Windholz et al., 1976 
Solubility 32 mg ai/L Suntio et al., 1988 

Elimination half-life 2.78 d Mammal half-life 
Proportion aquatic plants in 

manatee diet 1 FWS, 2020 

 

https://ecos.fws.gov/ecp0/profile/speciesProfile?sId=4469


EPA-HQ-OPP-2020-0090 (Attachment III) 

4 
 

To estimate concentrations in aquatic plants, we used the results of regression analyses 

conducted by Arnot and Gobas (2006). In their study, Arnot and Gobas determined the 

relationship between log bioconcentration factor (BCF) and log Kow following an extensive 

review of the literature for organic chemicals. A linear regression analysis was conducted for 

autotrophs (=aquatic plants). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑠𝑠: 𝑙𝑙𝐴𝐴𝑙𝑙 𝐵𝐵𝐵𝐵𝐹𝐹 = 0.21 + 0.63 ∙ 𝑙𝑙𝐴𝐴𝑙𝑙 𝐾𝐾𝐴𝐴𝐾𝐾 (𝑛𝑛 = 135,𝐴𝐴 < 0.0001) 

The estimated BCF was multiplied by the conservative estimate of concentration in water (mg 

ai/L). For carbaryl, EPA’s reported daily maximum concentration for Bin 3 was used (0.625 mg 

ai/L). The manatee does not depend on water bodies that resemble Bin 3. Rather, they are much 

more frequently found in much larger estuarine/marine habitats, bays, coves, and larger flowing 

waterbodies (e.g., Bin 4 and Bin 5) (FWS, 2020). 

Model Results 

The RQs for direct effects to the manatee consuming aquatic plants is 0.801 for acute risk and 

0.39 for chronic risk. Therefore, risk from direct effects is negligible, particularly given the 

conservatism associated with the Bin 3 peak daily concentration of carbaryl. For effects to 

aquatic plants on which manatees depend, the RQ is 0.026. Thus, no indirect effects are 

predicted on aquatic macrophytes which are the dominant dietary item for manatees. Therefore, 

the risks of direct and indirect effects of carbaryl to the West Indian manatee are considered 

negligible. 

Other Lines of Evidence 

Other lines of evidence should be considered to support or refute the modeling line of evidence, 

such as monitoring data, incident reports, and other information. U.S.  national monitoring data 

for 2012 to 2019 found a maximum aquatic carbaryl concentration of 2.18 µg ai/L, which is 287-

fold lower than the peak daily concentration estimated by EPA for Bin 3 (Table 2).  
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Table 2. Summary of untreated water monitoring data for carbaryl from the 
Water Quality Portal (NWIS, STORET, NAWQA) (2012 to 2019). 

Year # Samples # Detects % Detects 
Range of Detected 
Values (µg ai/L) 

Range of Level of 
Detection (µg ai/L) 

2012 2037 223 10.9 0.003-1.67 0.006-0.06 
2013 3181 241 7.6 0.003-0.724 0.006-0.06 
2014 2602 375 14.4 0.003-2.18 0.006-0.06 
2015 2808 194 6.9 0.004-0.361 0.006-0.06 
2016 2837 246 8.7 0.006-0.307 0.006-0.06 
2017 1983 150 7.6 0.003-0.466 0.0065-0.06 
2018 1703 131 7.7 0.003-0.441 0.006 
2019 689 32 4.6 0.006-0.033 0.006-0.0065 

 

As a result of re-registration of carbaryl in 2007, the labels were changed to reduce many 

maximum application rates, cancel use on wheat, prohibit certain aerial applications, and cancel 

some residential uses. Thus, it is not surprising that percent carbaryl detections and maximum 

detected concentrations are low among 17,000+ analyzed samples (Table 2). In the draft carbaryl 

BE (Chapter 3), EPA reported carbaryl concentrations in surface water of up to 400 µg ai/L 

(surface water sample in 1973 from a creek in Pennsylvania). EPA noted that “many of the high 

detections were historical and reported in the late 1980s, but several more recent detections 

exceeded 1 µg/L.” Historic monitoring data are not applicable, given the regulatory actions 

described above. The carbaryl ePest High predictions from the USGS (2020) indicate declining 

use since 1995 in the United States (Figure 1).  

 

Figure 1. USGS ePest high estimated carbaryl use from 1992 to 2016 (USGS, 2020). 
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The EPA BEAD evaluation of carbaryl use (Draft Carbaryl BE - Appendix 1-4) also indicates a 

trend of diminishing carbaryl use over time. This likely reflects regulatory mitigations, label 

changes over time, and competition from newer pesticides. These lines of evidence (monitoring 

data, regulatory history, and trends in carbaryl use) provide evidence that the predicted 

maximum daily EEC for Bin 3 based on the modeling conducted by EPA is an overly 

conservative prediction of carbaryl concentrations in the surface waters where manatees reside.  

For indirect effects, EPA indicated that the non-vascular-plant effect threshold (IC50 = 340 µg 

ai/L) was exceeded when compared to the predicted Bin 3 maximum daily EEC of 625 µg ai/L. 

As noted above, however, vascular plants are a far more important dietary item for manatees 

than are non-vascular plants. Therefore, in our analysis we relied on the IC50 of 23,900 µg ai/L 

for Lemna gibba. As indicated above, the maximum predicted water concentration is a highly 

conservative prediction of carbaryl exposure in water, and there is a lack of evidence to support 

the aquatic exposure model predictions. However, other lines of evidence are available. 

As indicated in the FWS recovery plan (FWS, 2001), the West Indian manatee consumes a wide 

variety of submerged, floating, and emergent vegetation. The species has a clear preference for 

vascular sea grasses in coastal areas. Aquatic macrophytes such as manatee grass (Syringodium 

filiforme) and shoalgrass (Halodule wrightii) are preferred over the macroalga (Caulerpa spp.). 

In other areas, manatees are known to feed in salt marshes on smooth cordgrass (Spartina 

alterniflora) and hydrilla (Hydrilla verticillata). All are vascular plants except for the macroalga. 

Therefore, if carbaryl surface water concentrations were high enough to reduce the availability of 

non-vascular (algal) species, the impact on the manatee in terms of food availability would be 

negligible. This is due to the presence of macrophyte species that are tolerant of carbaryl and the 

mobility of the manatee to search for vascular plants. In addition, algal species grow 

exponentially when conditions are favorable, and they recover rapidly from disturbance (Havens, 

1995). Thus, effects to algal communities are typically short-lived. Continuous carbaryl exposure 

over long durations is extremely unlikely given its typical use in the field in response to 

[fluctuating?] pest pressures. This line of evidence suggests that any effects to the manatee 

arising from adverse impacts to aquatic plants are “not reasonably likely to occur.” 
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Sources of Uncertainty 

Effects Assessment 

• Use of the rat effects endpoints as surrogate for the toxicity to the manatee is uncertain 

because the two species are taxonomically distant. Converting the rat LD50 with an 

assumed slope of 4.5 to a 1-in-a-population effect metric is highly conservative.  

Exposure Assessment 

• The manatee is found in marine/estuarine, brackish and freshwater environments. 

Applying a predicted water concentration that is a daily maximum from the most 

sensitive aquatic habitat that EPA modeled (Bin 3 – moderate flow) is therefore highly 

conservative. The simplified, generic BIN 3 habitat predicted surface water concentration 

significantly contributes to the conservatism of the manatee exposure modeling. This 

conservatism is not supported by the monitoring data and trend in carbaryl use over time. 

• Generic residue unit doses are not available for aquatic plants. Therefore, we used the 

results of a regression-based study by Arnot and Gobas (2006) to estimate the BCF for 

aquatic plants and multiplied the BCF by the daily Bin 3 concentrations. Because the Bin 

3 estimated water concentrations are highly conservative, the concentrations in aquatic 

plants are also highly conservative.  

 

Conclusion 

All lines of evidence support No Effect an effect determination for the West Indian manatee. 
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